Sorption-fluorimetric determination of fluoroquinolones in natural waters using a smartphone and chemometric analysis
Abstract
A simple, quick, and affordable method for the identification and determination of antibacterial substances of the fluoroquinolone series in natural waters by the sorption-fluorimetric method using a smartphone and chemometric analysis is considered. The proposed approach is based on the static sorption of fluoroquinolones by silica gel from aqueous solutions. When the sorbate is irradiated with monochromatic ultraviolet light (365 nm), blue or turquoise fluorescence is observed, the intensity of which was measured using a smartphone. The values of the basic components of the RGB colorimetric system were used as an analytical signal, followed by the calculation of the final colour. The possibility of using chemometric analysis, which allows reducing the analysis time and visualise the study data, is shown. The data array was processed by principal component analysis, hierarchical cluster analysis, and the k-means method using the XLSTAT software. The identification and assessment of the quantitative content of fluoroquinolones in natural water was carried out using chemometric analysis. Ranges of determined contents were 0.002-0.2 µg/cm3. A method for the determination of fluoroquinolones in natural waters is proposed. The relative error of the analysis results did not exceed 20%.
Downloads
References
Smirnova T.D., Danilina T.G., Rusanova T.YU., Simbireva N.A. Vliyanie serebryanyh nanochastic na fluorescentnye svojstva levofloksacina v prisutstvii ionov ittriya(III) v vodnyh i micellyarnyh sredah poverhnostno-aktivnyh veshchestv. ZHurn. analit. Himii. 2021; 76(1): 67-73 (in Russ.).https://doi.org/10.31857/S004445022101014X.
Yao T., Wang H., Si X., Yin S., Wu T., Wang P. Vliyanie serebryanyh nanochastic na fluorescentnye svojstva levofloksacina v prisutstvii ionov ittriya(III) v vodnyh i micellyarnyh sredah poverhnostno-aktivnyh veshchestv. Open Chem. 2018; 16: 1122-1128. https://doi.org/10.1515/chem-2018-0125.
Kamochkina I.YA., Rekharskaya E.M., CHuharkina A.P., Borzenko A.G. Opredelenie pefloksacina v moche metodom sinhronnoj fluorimetrii. Vestn. Mosk. Un-ta. Ser. 2. Himiya. 2007; 48(2): 97-100 (in Russian).
Lv S., Sun Y., Yang Y., Niu Z., Wen Y., Int. J. Adv. Res. Chem. Sci. Determina-tion of quinolones in human urine and wa-ter samples by ultrasound assisted disper-sive liquid-liquid microextraction based on solidification of floating organic droplet followed high performance liquid chroma-tography. 2019; 6 (5): 13-18. https://doi.org/10.20431/2349-0403.0605003.
Nakata H., Kannan K., Jones P.D., Giesy J.P. Determination of quinolones in human urine and water samples by ultra-sound assisted dispersive liquid-liquid mi-croextraction based on solidification of floating organic droplet followed high per-formance liquid chromatography. Chemo-sphere, 2005, Vol. 58, pp. 759-766. DOI:10.1016/j.chemosphere.2004.08.097
Lee H.B., Peart T.E., Svoboda M.L. Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatog-raphy with fluorescence detection, and liq-uid chromatography-tandem mass spec-trometry. J. Chromatogr. A 2007; 1139: 45-52. https://doi.org/10.1016/j.chroma.2006.11.068
Zhang J., Liu D., Shi Y., Sun C., Niu M., Wang R., Hu F., Xiao D., He H. Determination of quinolones in wastewater by Porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J. Chromatogr. B. 2017; 1068-1069: 24-32. https://doi.org/10.1016/j.jchromb.2017.09.046.
Turiel E., Bordin G., Rodriguez A.R. Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line solid-phase extrac-tion procedures coupled to HPLC-UV. J. Sep. Sci. 2005; 28: 257-267. https://doi.org/10.1002/jssc.200400018.
Seifrtova M., Aufartova J., Vytlaci-lova J., Pena A., Solich P., Novakova L. Determination of fluoroquinolone antibiot-ics in wastewater using ultra high-performance liquid chromatography with mass spectrometry and fluorescence detec-tion. J. Sep. Sci. 2010; 33: 2094-2108. https://doi.org/10.1002/jssc.201000215.
Prat M.D., Benito J., Compano R., Hernandez-Arteseros J.A., Granados M. Determination of quinolones in water sam-ples by solid-phase extraction and liquid chromatography with fluorimetric detec-tion. J. Chromatogr. A. 2004; 1041: 27-33. https://doi.org/10.1016/j.chroma.2004.04.042.
Tang H.Z., Wang Y.H., Li S., Wu J., Li J.W., Zhou H.Y., Gao Z.X. Graphene oxide composites for magnetic solid-phase extraction of twelve quinolones in water samples followed by MALDI-TOF MS. Anal. Bioanal. Chem. 2019; 411 (26): 7039-7049. https://doi.org/10.1007/s00216-019-02081-w.
Wang H., Zhao X., Xu J., Shang Y., Wang H., Wang P., He X., Tan J. De-termination of quinolones in environmental water and fish by magnetic metal organic frameworks based magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spec-trometry. J. Chromatogr. A. 2021; 1651: 462286. https://doi.org/10.1016/j.chroma.2021.462286.
Fedotov P.S., Malofeeva G.I., Savonina E.YU., Spivakov B.YA. Tverdo-faznaya ekstrakciya organicheskih vesh-chestv: netradicionnye metody i podhody. ZHurn. analit. Himii. 2019; 74(3): 163-172 (in Russ.).
Lombardo-Agui M., Gamiz-Gracia L., Garcia-Campana A.M., Cruces-Blanco C. Tverdofaznaya ekstrakciya organich-eskih veshchestv: netradicionnye metody i podhody. Anal. Bioanal. Chem. 2010; 396: 1551-1557. https://doi.org/10.1007/s00216-009-3309-4.