Kinetics of Nickel Ion Sorption on Soils of Udmurtia

  • Marina A. Shumilova Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russian Federation
  • Vadim G. Petrov
Keywords: nickel, soil, sorption, sorption kinetics, diffusion, pseudo-first and pseudo-second order reaction model

Abstract

Due to the components of the absorbing complex, soil is a powerful natural sorbent of heavy metals in the surface layer, thus reducing the negative impact of pollutants. The accumulation of nickel ions in soil, which are capable of re-dissolving under changing environmental conditions, determines the need to study the kinetics of the sorption process between metal ions and soil.

A laboratory experiment for the study of the sorption kinetics of nickel ions was carried out under static conditions of contact of a salt solution with the upper humus horizon (A0 ) of sod-podzolic soil, sod-carbonate and grey forest soils, the most common in the Udmurt Republic. The results of determining the parameters of the kinetics of nickel ions from aqueous solutions of nickel sulphate in soil are presented. A series of soil suspensions was used in the experiment, in which the residual concentration of metal ions was determined at fixed intervals (0.5-600 h) by atomic absorption spectrometry with electrothermal atomization.

It was determined that the sorption process proceeds quite quickly, more than 90% of nickel ions are absorbed in the first two hours by all types of studied soils; equilibrium in the "soil-nickel" system is achieved in almost 24 hours. Using experimental kinetic curves, it was found that the value of adsorption at the moment of equilibrium in sod-podzolic soil with respect to nickel ions was equal to 0.00697 mol∙kg-1, in sod-carbonate ̶ – 0.00645mol∙kg-1 and for the grey forest ̶ – 0.00635 mol∙kg-1. The application of the equations of diffusion kinetics to the experimental kinetic curves showed that the kinetics of the studied sorption process is a combination of external and internal diffusion kinetics, while external diffusion limitations are manifested to a greater extent in sod-podzolic and sod-carbonate soils. A comparison of the results of using pseudo-first and pseudo-second order models in studying the mechanisms of nickel ion sorption by soils of Udmurtia shows that under the studied conditions, the pseudo-second order equation better described the experimental data for all studied soil types, indicating that the process of metal sorption by soil is controlled by a chemical reaction. The maximum rate constant was recorded for sod-carbonate soil (2.97∙10-6 kg∙mol-1∙h-1), the minimum values of the rate constant ̶ for sod-podzolic soil (0.68∙10-6 kg∙mol-1∙h-1).

Downloads

Download data is not yet available.

Author Biographies

Marina A. Shumilova, Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russian Federation

senior researcher at the laboratory of information and measurement systems, Ph.D (chemistry), associate professor, Udmurt Federal Research Center of the Ural Brunch of the RAS, Izhevsk, Russian Federation, e-mail: shumilovama@udman.ru

Vadim G. Petrov

Leading Researcher at the laboratory of information and measurement systems, grand Ph.D (chemistry), Udmurt Federal Research Center of the Ural Brunch of the RAS, Izhevsk, Russian Federation

References

Aristarkhov A.N., Kharitonova A.F. Sostoyaniye i metodologiya prognoza zag-ryazneniya pochv tyazhelymi metallami. Fertility. 2002; 3: 22-24. (In Russ.).

Lednev A.V., Lozhkin A.V., Pozdeev G.A. Remediatsiya agrodernovo-podzolistoy pochvy, zagryaznennoy nikelem. Russian agricultural science. 2019; 6: 31-35. https://doi.org/10.31857/S2500-26272019631-35. (In Russ.).

Ramachandran V., D'Souza S.F., Adsorption of nickel by Indian soils J. of Soil Sci. and Plant Nutrition. 2013; 13(1): 165-173. https://doi.org/10.4067/S0718-95162013005000015 .

Moreira. C.S., Casagrande. J.C., Al-leoni. L.R.F., D’Camargo O.A., Berton R.S., Nickel adsorption in two Oxisols and an Alfisol as affected by pH, nature of the electrolyte, and ionic strength of soil solu-tion. J. of Soils and Sediments. 2008; 8: 442-451.

Zykina N.G., Kuznetsov M.F. K vo-prosu o fonovom soderzhanii nekotorykh mikroelementov (V, Ni, Ti, Sn, Sc, Sr, Y, Yb) v pochvakh Udmurtii. Bulletin of the Udmurt University. Series Biology. Earth sciences. 2020; 30(1): 43-52. https://doi.org/10.35634/2412-9518-2020-30-1-43-52. (In Russ.).

Zhukova L.A., Gulamova N.V., Glebova I.V. Osnovnyye zakonomernosti kinetiki sorbtsii ionov tsirkoniya serymi le-snymi pochvami Tsentral'nogo cherno-zem'ya. Izvestiya TАA. 2008; 2: 25-31. (In Russ.).

Karpova A.Yu., Shumilova M.A. Sorbtsionnaya sposobnost' dernovo-podzolistoy pochvy po otnosheniyu k ionam nikelya. Chemical Physics and Mesoscopy. 2019; 21(2): 262-266. https://doi.org/10.15350/17270529.2019.2.28. (In Russ.).

Shumilova M.A., Petrov V.G. Is-sledovaniye mekhanizmov pogloshcheniya ionov nikelya pochvoy Udmurtii. Sorbtsionnye I khromatograficheskiye protsessy. 2020; 20(5): 594-601. https://doi.org/10.17308/sorpchrom.2020.20/3052. (In Russ.).

Kovrigo V.P. Pochvy Udmurtskoy Respubliki. Izhevsk. IzhSАA Publ. 2004. 490 p.

Krechetov P.P., Dianova T.M. Khimiya pochv. Analiticheskiye metody issledovaniya. M. MSU Publ. 2009. 148 p. (In Russ.).

Saldadze K.M., Kopylova-Valova V.D. Kompleksoobrazuyushchiye ionity (kompleksity). M. Khimiya Publ. 1980. 336 p. (In Russ.).

Quantitative chemical analysis tech-nique. Determination of metals in drinking, mineral, natural, waste water and atmos-pheric precipitation by the atomic absorp-tion method. M-02-902-125-2005. St. Pe-tersburg. 2005. 28 p. (In Russ.).

Sosorova S.B., Tsyrempilov E.G., Boloneva L.N., Lavrentyeva I.N., Ubugunov V.L. Sorbtsiya svintsa allyuvi-al'noy pochvoy Zapadnogo Zabaykal'ya (Respublika Buryatiya). Izvestiya TАA. 2019; 6: 5-22. (In Russ.).

On-line calculation of linear regres-sion by the least squares method. Available at: https://www.chem-astu.ru/science/lsq/ (accessed 29 April 2021). (In Russ.).

Shakirova V.V., Sadomtseva O.S., Koshkin E.M., Kozhina A.D. Issledovaniye protsessov sorbtsii nekotorykh ionov tya-zhelykh metallov na prirodnykh materi-alakh, Natural Sciences. Chemistry. 2016; 57(4): 118-124. (In Russ.).

Rogova O.B., Vodyanitsky Yu.N. Sorbtsiya tsinka i medi v pochvakh zony vozdeystviya Cherepovetskogo metallur-gicheskogo kompleksa. Bulletin of the Soil Institute named after V.V. Dokuchaev. 2010; 65: 65-74. https://doi.org/10.19047/0136-1694-2010-65-65-74. (In Russ.).

Pankin A.A., Linnik V.N., Molotok E.V. Kinetika sorbtsii ionov tyazhelykh metallov pochvoy. Bulletin of Polotsk State University. Series C: Basic Sciences. 2006; 10: 181-183. (In Russ.).

Fenelonov V.B. Vvedeniye v fizi-cheskuyu khimiyu formirovaniya supramo-lekulyarnoy struktury adsorbentov i katali-zatorov. Novosibirsk. SB RAS Publ. 2004. 442 p. (In Russ.).

Alosmanov R.M. Issledovaniye ki-netiki sorbtsii ionov svintsa i tsinka fosforsoderzhashchim kationitom. Vestn. Moscow University. Ser. 2: Chemistry. 2011; 52(2): 145-148. (In Russ.).

Li N., Bai R., Copper adsorption on chitosan – cellulose hydrogel beads: behav-iors and mechanisms. Separ. Purif-ic.Technol. 2005; 42(3): 237-247.

Neudachina L.K., Petrova Yu.S., Zasukhin A.S., Osipova V.A., Gorbunova E.M., Larina T.Yu. Kinetika sorbtsii ionov tyazhelykh metallov piridiletilirovannym aminopropilpolisiloksanom. Analytics and control. 2011; 15(1): 87-95. (In Russ.).

Ho Y.S., Ng J.C.Y., McKay G., Ki-netics of pollutant sorption by biosorbents: review. Separ. Purif. Methods. 2000; 29: 189-232.

Published
2022-05-18
How to Cite
Shumilova, M. A., & Petrov, V. G. (2022). Kinetics of Nickel Ion Sorption on Soils of Udmurtia. Sorbtsionnye I Khromatograficheskie Protsessy, 22(2), 173-182. https://doi.org/10.17308/sorpchrom.2022.22/9222