An investigation of the pore structure of ultrafiltration cellulose acetate membranes UMA-50 and UAM-100 by spectroscopy and electron microscopy
Abstract
The study presents the results of an investigation into the structure of cellulose acetate membranes UAM-50 and UAM-100 before and after exposure to transmembrane pressure using IR spectroscopy and scanning electron microscopy. In the ranges of stretching vibrations 3000-3700cm-1; 2884.02-2942.35 cm-1 changes in atomic vibrations for working samples of membranes were noted. A decrease in scattering intensity, a change in the shape of absorption bands, and a decrease in their asymmetry index for OH groups to 0.77 for UAM-50 and to 0.79 for UAM-100 were noted. Two "shoulders" appear on the absorption bands. For UAM-50 the first at 3350.2 cm-1, the second at 3412.8 cm-1. For UAM-100 they were at 3248.5 and 3505.9 cm-1. This indicates the destruction of OH groups involved in intermolecular bonds. The study of cellulose acetate membranes by scanning electron microscopy allowed us to establish the thickness of the active layer of the studied samples: for UAM-50 – 28 nm, for UAM-100 – 16 nm. Pores from 2 to 20 nm were observed on the surface of the active layer of the membranes. A decrease in the pore diameter was noted in the working samples of the membranes. This phenomenon is explained by the sorption of the retained substance by the membrane, and the applied pressure compacts the active layer, thereby reducing the pores.
Studies of the surface morphology of ultrafiltration cellulose acetate membranes demonstrated that membranes have an asymmetric pore structure. The finely porous selective layer traps solute molecules, and the coarsely porous layer located under the selective layer removes the solvent, affecting the permeable properties of the membrane.
Downloads
References
Zuo K., Wang K., DuChanois R.M., Fang Q., Deemer E.M., Huang X., Xin R., Said I.A., He Z., Feng Y., Walker W.Sh., Lou J., Elimelech M., Huang X., Li Q. Selective membranes in water and wastewater treatment: Role of advanced materials. Materials Today. 2021; 81. https://doi.org/10.1016/j.mattod.2021.06.013
Lazarev S.I., Golovin Yu.M., Shestakov K.V., Kovalev S.V. Osobennosti rentgenodifraktometricheskih issledovanij strukturnyh harakteristik polimernyh mem-bran Vestnik Technologicheskogo Universi-ty. 2018; 21(2): 22-26.
Kovaleva O.A., Lazarev S.I., Kovalev S.V., Konovalov D.N. Sravnitel'noe issle-dovanie metodov razdeleniya tekhnolog-icheskih rastvorov i stochnyh vod gal'vanicheskih proizvodstv Vestnik Kazanskogo Technologicheskogo University. 2018; 21(5): 58-64.
Lazarev S.I., Golovin Yu.M., Kovalev S.V., Ryzhkin V.Yu. Metod avtomatiziro-vannogo opredeleniya morfologii selektivnopronicaemoj poverhnosti polimernyh membran OPMN-P i OFAM-K. Factory laboratory. Diagnostics of materials. 2018; 84(9): 34-40.
She Q., Wang R., Fane A.G., Tang C.Y. Membrane fouling in osmotically driven membrane processes: A review. J. of Membrane Science. 2016; 499: 201-233.
Lyozova O.S., Myasnikov D.V., Shi-lova O.A., Ivanova A.G., Selivanov S.I. Issledovanie sostava i struktury ionoprovodyashchih membran na osnove poli-vinilovogo spirta metodom spektroskopii YAMR 1N. Alternative energy and ecology (ISJAEE). 2021; 4-6: 93-105. https://doi.org/10.15518/isjaee.2021.04-06.093-105
Abonosimov O.A., Lazarev S.I., Shestakov K.V., Levin A.A. Issledovanie sostava i struktury ionoprovodyashchih membran na osnove polivinilovogo spirta metodom spektroskopii YAMR 1N. Chemical Technology. 2018; 19(2): 74-80.
Akberova E.M., Kolganov V.I., Korotkov D.V., Babichev S.V. Fiziko-himicheskie svojstva i morfologiya pover-hnosti geterogennyh ionoobmennyh mem-bran posle temperaturnoj modifikacii Sorbtsionnye I khromatograficheskiye protsessy. 2016; 16(5): 631-639.
Goleva E.A., Vasilyeva V.I., Sele-menev V.F., Kuznetsov V.A. et al. Vliyanie fenilalanina na strukturu profilirovannoj sul'fokationoobmennoj membrany MK-40. Sorbtsionnye I khromatograficheskiye protsessy. 2016; 16(5): 640-652.
Yatsev A.M., Akberova E.M., Goleva E.A., Vasilyeva V.I. et al. Diagnos-tika izmenenij mikrostruktury poverhnosti i ob"ema sul'fokationoobmennoj membrany MK-40 pri elektrodialize sil'nomineralizirovannyh prirodnyh vod. Sorbtsionnye I khromatograficheskiye protsessy. 2017; 17(2): 313-322.
VasilievaV.I., Akberova E.M., Goleva E.A., Yatsev A.M. et al Izmenenie mikrostruktury i ekspluatacionnyh harakter-istik sul'fokationoobmennoj membrany MK-40 pri elektrodialize prirodnyh vod. Surface. X-ray, synchrotron and neutron research. 2017; 4: 49-56.
Akberova E.M., Vasilyeva V.I., Ko-stylev D.V., Smagin M.A., REM-analiz svojstv poverhnosti eksperimental'nyh sul'fokationoobmennyh membran RALEX. Sorbtsionnye I khromatograficheskiye protsessy. 2019; 19(5): 557-565.
Seitzhanova M.A., Yashnik S.A., Ismagilov Z.R., Khairulin S.R. et al. Issle-dovanie prirody funkcional'nyh grupp graf-enovyh membran metodom IK-spektroskopii Chemistry for sustainable de-velopment. 2020; 28(5): 494-500.
Horohorina I.V. Diss. dokt. tekh. nauk. Tambov. 2021. 407 p.
Zhbankov R.G. Phizika cellulozi i ee proizvodnih. Minsk. Nauka i tehnika. 1983. 296 p.
Bazarnova N.G., Karpova E.V., Katrakov I.B. Methods for the study of wood and its derivatives: textbook. Benefit. Baranul. Alt. State University. 2002. 160 p.
Terent'eva E.P., Udovenko N.K., Pavlova E.A. Chemistry of wood, cellulose and synthetic polymers: textbook. SPb., SPbGTURP. 2014. Part 1. 53 p.
Nakasini K. Infrakrasnie spectri i stroenie organicheskih coedinenii. A practi-cal guide M. Mir. 1965. 216 p.
Lazarev S.I., Golovin Y.M., Khorokhorina I.V., Lazarev D.S. Study of the surface acetate-cellulose layer in the compositional membranes by the vibrational spectroscopy method. Russian Journal of Physical Chemistry B 2020. 14; (5): 835-841.
Lazarev S.I., Golovin Y.M., Khorokhorina I.V. et al. Influence of the structure of the surface cellulose acetate layer on the transport characteristics of ultrafiltration composite membranes. Journal of Engineering Physics and Thermophysics. 2021; 94(2): 384-391.