Assessing of the sorption properties of the Eu2O3-SiO2 phase for organ-ic compound vapours by high-sensitivity piezoquartz microweighing
Abstract
The article summarises the results of the evaluation of the sorption properties of the solid phase of low-weight europium oxide. The piezoquartz microweighing technique was used to study the features of sorption of vapours of individual volatile organic compounds of various classes on the Eu2O3-SiO2 microphase of small weight (from 0.3 to 2.2 µg), which potentially had luminescent properties. The features of vapour sorption depending on the weight of the coating were studied. We determined that the coatings less than 1 μg have low efficiency of sorption of substances and their application was not reasonable. Besides, the small weight of the phase does not allow a uniform coating to be obtained and it cannot be used to produce sensors. The sensors with higher weight of the Eu2O3-SiO2 phase can detect vapours of the C3-C4 ketones, C3-C4 alcohols, acetaldehyde, methanamine, butoxybutane-1, and butanoic acid. We used several algorithms for processing the output curves of sensors with different amounts of europium oxide to determine the qualitative parameters for the identification of substances in mixtures. The most informative are the kinetic parameters that reflect changes in the rate of vapour sorption in different time intervals when the sensor was exposed to vapours. We managed to identify methanamine (Cmin=3.1 mg/dm3) against water vapour (Cmin=1.7 mg/dm3), using the sorption kinetic parameters calculated from normalised time-frequency diagrams of the sensors. Aliphatic amines differ from other vapours due to their characteristic sorption on the phase. As the detection time increases, the sensor signal in the vapour of this substance increases steadily over a long period of time. This reduces the sensitivity of the Eu2O3-SiO2-coated piezosensor, while the time for the accumulation of methanamine vapour from real samples increases. We evaluated the detection and identification limits for methanamine and other studied vapours under optimum sorption conditions and on isolated phases of the sorbent. We compared the results with the literature data for the determination of methanamine in bioassays for the purposes of clinical diagnostics. The sorption and potential luminescent properties extend the possibilities of the Eu2O3-SiO2 nanoparticles for the diagnostics of bioassays with a visible response to the analyte. However, the sensitivity of piezosensors based on europium oxide nanoparticles exceeds the luminescence sensitivity of this phase.
Downloads
References
Oh S.Y., Hong S.Y., Jeong Y.R., Yun J., Park H., Jin S.W., Lee G., Oh J. H., Lee H., Lee S.S., Ha J.S. A Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Appl Mater Interfaces. 2018; 10(16): 13729-1374. https://doi.org/10.1021/acsami.8b03342
Mazzara F., Patella B., D’Agostino C., Bruno M.G., Carbone S., Lopresti F., Aiello G., Torino C., Vilasi A., O’Riordan A., Inguanta R. PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring. Chemosensors. 2021; 9(7): 169. https://doi.org/10.3390/chemosensors9070169
Silva R.R., Raymundo-Pereira P.A., Campos A.M., Wilson D., Otoni C.G., Ba-rud H.S., Costa C., Domeneguetti R.R., Balogh D.T., Ribeiro S., Oliveira O.N. Mi-crobial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta. 2020; 2018: 121153. https://doi.org/10.1016/j.talanta.2020.121153
Li M., Wang L., Liu R., Li J., Zhang Q., Shi G., Li Y., Hou C., Wang H. A high-ly integrated sensing paper for wearable electrochemical sweat analysis. Biosensors and Bioelectronics. 2020; 174: 112828. https://doi.org/10.1016/j.bios.2020.112828
Parlak O., Keene S.T., Marais A., Curto V.F., Salleo A. Molecularly selective na-noporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances. 2018; 4: 2904. https://doi.org/10.1126/sciadv.aar2904
Yeo S.Y., Park S., Yi Y.J., Kim D.H., Lim J.A. Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures. ACS Applied Materials and Interfaces. 2017; 9: 42996-43003. https://doi.org/10.1021/acsami.7b15960
Di X., Ma Q., Xu Y., Yang M., Wu G., Sun P. High-performance ionic conduc-tive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers. 2021; 5: 315-323. https://doi.org/10.1039/D0QM00625D
Goding J., Gilmour A., Martens P., Poole-Warren L., Green R. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes. Advanced Healthcare Materials. 2017; 6(9): 1601177. https://doi.org/10.1002/adhm.201601177
Shen B., Li J., Tang Y., Xu H., Li F. An Ultra-Stretchable Sensitive Hydrogel Sensor for Human Motion and Pulse Monitoring. Micromachines. 2021; 12(7): 789. https://doi.org/10.3390/mi12070789
Kang H.K., Kim H., Hong C.S., Kim J., Kim J.S., Kim D.W. Development and Performance Evaluation of Wearable Respiratory Self-Training System Using Patch Type Magnetic Sensor. Frontiers in Oncol-ogy. 2021; 11: 680147. https://doi.org/10.3389/fonc.2021.680147
Wang A., Maharjan S., Liao K., McElhenny B., Wright K.D., Dillon E.P. Poly(octadecyl acrylate)-Grafted-Multiwalled Carbon Nanotube Composites for Wearable Temperature Sensors. ACS Applied Nano Materials. 2020; 3: 2288-2301. https://doi.org/10.1021/acsanm.9b02396
Sappati K.K., Bhadra S. Printed Acoustic Sensor for Low Concentration Volatile Organic Compound Monitoring. IEEE Sensors Journal. 2021; 21(8): 9808-9818. https://doi.org/10.1109/JSEN.2021.3056002
Markina M.G. Assessment of the to-tal content of thiols in the skin by colorimetric method of Competitiveness of Terri-tories. Competitiveness of Territories (Konkurentosposobnost' territorij. Materialy XX Vserossijskogo ekonomicheskogo fo-ruma molodyh uchenyh i studentov). 2017; 87-89.
Escobedo P., Ramos-Lorente C. E., Martinez-Olmos A., Carvajal M.A., Ortega-Muñoz M., Orbe-Paya I.D., Hernandez-Mateo F., Santoyo-Gonzalez F., Capitan-Vallvey L.F., Palma A.J., Erenas M.M. Wireless wearable wristband for continuous sweat pH monitoring. Sensors and Actuators B Chemical. 2020; 128948. https://doi.org/10.1016/j.snb.2020.128948
Tang Z., Yang J., Yu J., Cui B. A colorimetric sensor for qualitative discrimination and quantitative detection of volatile amines. Sensors (Basel, Switzerland). 2010; 10(7): 6463-6476. https://doi.org/10.3390/s100706463
Zhou Z., Shu T., Sun Y., Si H., Peng P., Su L., Zhang X. Luminescent wearable biosensors based on gold nanocluster networks for "turn-on" detection of Uric acid, glucose and alcohol in sweat. Biosensors and bioelectronics. 2021; 192: 113530. https://doi.org/10.1016/j.bios.2021.113530
Chen M.M., Cheng S.B., Ji K., Gao J., Liu Y.L., Wen W., Zhang X., Wang S., Huang W.H. Construction of a flexible electrochemiluminescence platform for sweat detection. Chemical Science. 2019; 10(25): 6295-6303. https://doi.org/10.1039/C9SC01937E
Lim C.J., Lee S., Kim J.H., Kil H.J., Kim Y.C., Park J.W. Wearable, Lumines-cent Oxygen Sensor for Transcutaneous Oxygen Monitoring. ACS Applied Materials and Interfaces. 2018; 10(48): 41026-41034. https://doi.org/10.1021/acsami.8b13276
Guo J., Zhou B., Yang C., Dai Q., Kong L. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Optics letters. 2019; 44(23): 5747-5750. https://doi.org/10.1364/OL.44.005747
Ren Y., Feng J. Skin-Inspired Multi-functional Luminescent Hydrogel Contain-ing Layered Rare-Earth Hydroxide with 3D Printability for Human Motion Sensing. ACS Appl Mater Interfaces. 2020; 12(6): 6797-6805. https://doi.org/10.1021/acsami.9b17371
Sekine Y., Kim S.B., Zhang Y., Bandodkar A.J., Xu S., Choi J., Irie M., Ray T.R., Kohli P., Kozai N., Sugita T., Wu Y., Lee K., Lee K.T., Ghaffari R., Rogers J.A. A fluorometric skin-interfaced micro-fluidic device and smartphone imaging module for: In situ quantitative analysis of sweat chemistry. Lab on a Chip. 2018; 18(15): 2178-2186. https://doi.org/10.1039/C8LC00530C
Yao J., Ji P., Wang B., Wang H., Chen S. Color-tunable Luminescent Macrofibers Based on CdTe QDs-loaded Bacteri-al Cellulose Nanofibers for pH and Glucose Sensing. Sensors and Actuators B: Chemical. 2017; 254: 110-119. https://doi.org/10.1016/j.snb.2017.07.071
Gao B.B., Elbaz A., He Z.Z., Xie Z.Y., Xu H., Liu S.Q., Su E., Liu H., Gu Z.Z. Bioinspired Kirigami Fish-Based High-ly Stretched Wearable Biosensor for Human Biochemical-Physiological Hybrid Monitoring. Advanced materials and technologies. 2018; 3: 1700308. https://doi.org/10.1002/admt.201700308
Engel L., Tarantik K.R., Pannek C., Wöllenstein J. Screen-Printed Sensors for Colorimetric Detection of Hydrogen Sulfide in Ambient Air. Sensors. 2019; 19(5): 1182. https://doi.org/10.3390/s19051182
O'Toole M., Shepherd R., Wallace G.G., Diamond D. Inkjet printed LED based pH chemical sensor for gas sensing. Analytica chimica acta. 2009; 652: 308-314. https://doi.org/10.1016/j.aca.2009.07.019
Engel L., Tarantik K.R., Pannek C., Wöllenstein J. Screen-Printed Sensors for Colorimetric Detection of Hydrogen Sul-fide in Ambient Air. Sensors. 2019; 19(5): 1182. https://doi.org/10.3390/s19051182
Su B., Zhang Z., Sun Z., Tang Z., Xie X., Chen Q., Cao H., Yu X., Xu Y., Liu X., Hammock B.D. Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A. Journal of hazardous materials. 2022; 422: 126838. https://doi.org/10.1016/j.jhazmat.2021.126838
Zhang R.R., Li X.J., Sun A.L., Song S.Q., Shi X.Z. A highly selective fluorescence nanosensor based on the dual-function molecularly imprinted layer coated quantum dots for the sensitive detection of diethylstilbestrol/cypermethrin in fish and seawater. Food Control. 2022; 132: 108438. https://doi.org/10.1016/J.FOOD-CONT.2021.108438
Zhu W.T., Zhou Y.S., Liu S., Luo M., Du J., Fan J.P., Xiong H., Peng H.L. A novel magnetic fluorescent molecularly im-printed sensor for highly selective and sen-sitive detection of 4-nitrophenol in food samples through a dual‐recognition mechanism. Food Chem. 2021; 348: 129126. https://doi.org/10.1016/j.foodchem.2021.129126
Luo Z., Cai Kaiyong, Zhang Beilu, Duan L., Liu A., Gong D. Application of Mesoporous Silica Nanoreservoir in Smart Drug Controlled Release Systems. Progress in Chemistry. 2011; 23: 2326-2338.
Qi H., Peng Y., Gao Q., Zhang C. Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors. Sensors. 2009; 9: 674-695. https://doi.org/10.3390/s90100674
Yu H., Xia L., Feng D., Dong X., Zhao X. The preparation and luminescent characters of mesoporouss SiO2/Sm composite materials. Main Group Chemistry. 2015; 14: 255-265. https://doi.org/10.3233/MGC-150168
Human Metabolome Database: Showing metabocard for Acetaldehyde. Available at: https://hmdb.ca/metabolites/HMDB0000990 (accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for Propyl alcohol. Available at: https://hmdb.ca/metabolites/HMDB0000820 (accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for 1-Butanol. Avail-able at: https://hmdb.ca/metabolites/HMDB0004327 (accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for Acetone. Availa-ble at: https://hmdb.ca/metabolites/
HMDB0001659(accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for Butanone. Availa-ble at: https://hmdb.ca/metabolites/
HMDB0000474 (accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for Butyric acid. Available at: https://hmdb.ca/metabolites/
HMDB0000039 (accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for L-Lactic acid. Available at: https://hmdb.ca/metabolites/
HMDB0000190 (accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for Dipropyl ether. Available at: https://hmdb.ca/metabolites/HMDB0251471 (accessed: 23 November 2021).
Human Metabolome Database: Showing metabocard for Methylamine. Available at: https://hmdb.ca/metabolites/HMDB0000164 (accessed: 23 November 2021).
Kuznetsova I.V., Niftaliev S.I., Lygina L.V., Sinelnikov A.A., Avdalyan A.S. Synthesis and Properties of Nanosized Silicate Compositions Containing Oxides of Rare Earth Metals. "Physico-chemical pro-cesses in condensed media and at F50 in-terphase boundaries (PHAGRAN-2021)", proceedings of the IX All-Russian Conference with international participation dedi-cated to the 100th anniversary of the birth of Ya.A. Ugai, October 4-7, 2021, Voronezh, 2021, P. 359-360.
Sauerbrey G.G. Messung von plat-tenschwingungen sehr kleiner amplitude durch lichtsttrom-modulation. Zeitschrift für Physik. 1964; 178: 457-471. https://doi.org/10.1007/bf01379475
Kuchmenko T.A., Umarkhanov R.U., Grazhulene S.S., Glyadova S.V., Shkinev V.M. Microstructural Studies of Sorption Layers of Mass-Sensitive Sensors for the Detection of Nitrogen-Containing Compounds. Journal of Surface. X-ray, synchrotron and neutron studies. 2014; 4: 9-17. https://doi.org/10.7868/S0207352814040155
Kuchmenko T.A., Umarkhanov R.U., Menzhulina D.A. Biohydroxyapatite is a new phase for selective microbalancing of vapors of organic compounds, markers of inflammation, in the nasal mucus of calves and humans Message 1. Sorption in model systems. Sorptsionnye I kromatograficheskie protsessy. 2021; 21(2): 142-152. https://doi.org/10.17308/sorpchrom.2021.21/3348
Kuchmenko T.A., Umarkhanov R.U., Grazhulene S.S., Zaglyadova S.V., Shkinev V.M. Microstructural investiga-tions of sorption layers in mass-sensitive sensors for the detection of nitrogencontaining compounds. Journal of Surface Investigation. X-ray, Synchrotron and Neu-tron Techniques. 2014; 8: 312-320. https://doi.org/10.1134/S1027451014020372
Duranton F., Cohen G., De Smet R., Rodriguez M., Jankowski J., Vanholder R., Argiles A. Normal and Pathologic Concen-trations of Uremic Toxins. Journal of the American Society of Nephrology. 2012; 23(7): 1258-1270. https://doi.org/10.1681/ASN.2011121175
Li H., Luo W., Lin J., Lin Z., Zhang Y. Assay of plasma semicarbazide-sensitive amine oxidase and determination of its en-dogenous substrate methylamine by liquid chromatography. Journal of chromatog-raphy. B, Analytical technologies in the bi-omedical and life sciences. 2004; 810(2): 277-282. https://doi.org/10.1016/j.jchromb.2004.08.011
Silwood C.J., Lynch E., Claxson A.W., Grootveld M.C. 1H and 13C NMR Spectroscopic Analysis of Human Saliva. Journal of dental research. 2002; 81: 422-427. https://doi.org/10.1177/154405910208100613
Kutyshenko V.P., Molchanov M., Beskaravayny P., Uversky V.N., Timchen-ko M.A. Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy. PloS one. 2011; 6: pp. e28824. https://doi.org/10.1371/journal.pone.0028824