Theoretical calculation of the parameters of the three-parameter chromatographic phase characterization method II. Hydrogen bond parameter and hydrophilicity characteristic

Keywords: gas chromatography, stationary phase, hydrophilicity, adsorption energy, intermolecular interactions, hy-drogen bonding

Abstract

. The selectivity of separation in gas chromatography is determined by the nature of the stationary phase. The authors previously proposed a model of intermolecular interactions and a theoretical method of three-parameter characterization of stationary phases in liquid chromatography based on it. These were applied to quantify the ability of molecules to participate in dispersion and dipole-dipole interactions and hydrogen bonds. The method has proved to be effective in describing the properties of stationary phases of various classes. The properties of stationary phases and sorbate molecules are described by two selectivity characteristics: polarity and hydrophilicity, which can be calculated from the direct problem using the structural formula of the substance and from the inverse problem using the experimental data in the form of Kovacs retention indices or Rorschneider-McReynolds constants. The chosen model was internally consistent, and both calculation methods were equal. A convenient and illustrative way to classify stationary phases using the three-parameter characteristic method was the selectivity map, which, combined with the principle of similarity of properties, was used to choose the most selective stationary phase for a given sorbate. This choice did not require experimentation.

The proposed work reveals the definitions of the parameters of the probability of hydrogen bonding and hydrophilicity. This is the second part of a series of articles dedicated to determining the parameters of the chosen method. The main tool used to describe intermolecular interactions was the theory of generalised charges developed earlier in the laboratory of sorption methods of IGAC RAS. Using this theory, the key characteristics of the proposed method were determined – generalized charges and the probability of formation of a hydrogen bond. For the first time, the hydrogen bond energy was theoretically estimated as the product of the minimum possible energy of the electronic bond between the donor hydride and the acceptor atom, explained by the properties of the corresponding hydrides, by the probability of its occurrence, which depended on the structure of the interacting molecules. The paper provides definitions and expressions for the hydrogen bond energy, as well as the probability of its formation (the H-bond parameter) and hydrophilicity. We presented the results of a detailed calculation of the hydrogen bond parameters of substances of different classes, including gas chromatographic stationary phases.

Downloads

Author Biographies

Elena A. Zaitceva, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russian Federation

Ph.D., Senior scientific fellow, Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences (GEOKHI RAS), Moscow, Russian Federation, email: zaitceva@geokhi.ru

Anatoliy M. Dolgonosov, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russian Federation

Dr. sci. (chem), Leading scientific fellow, Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences (GEOKHI RAS), Moscow, Russian Federation, email: amdolgo@mail.ru

References

Sokolov N.D. Vodorodnaya svyaz’, Uspekhi Fizicheskikh Nauk (Soviet Physics-Uspekhi), 1955; 57: 205. (In Russ.)

Pauling L. Nature of forces between large molecules of biological interest, Nature, 1948; 161: 707-709. https://doi.org/10.1038/161707a0

Hobza P. Theoretical studies of hydrogen bonding, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2004; 100: 3-27. https://doi.org/10.1039/B313660B

Hobza P., Havlas Z. Blue-shifting hydrogen bonds. Chemical Reviews, 2000; 100(11): 4253-4264. https://doi.org/10.1021/cr990050q

Chopra P., Chakraborty Sh. Computational study of red- and blue-shifted C-H···Se hydrogen bond in Q3C-H···SeH2 (Q = Cl, F, H) complexes. Chemical Physics, 2018; 500: 54-61. https://doi.org/10.1016/j.chemphys.2017.11.010

Qingzhong Li, Haiping Liu, Xiulin An, Baoan Gong, Jianbo Cheng. Effect of methyl group on the cooperativity of CH···O blue-shifted hydrogen bond in HCHO–HCHO–HCHO cyclic complex. Journal of Molecular Structure: THEOCHEM, 2008; 861(1-3): 14-17. https://doi.org/10.1016/j.theochem.2008.04.002

Guoqun Liu, Lin Ping, Hui Li. C–H···O hydrogen bond in chloroform–triformylmethane complex: Blue-shifted or red-shifted? Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007; 66(3): 643-645. https://doi.org/10.1016/j.saa.2006.04.004

San-Chi Wang, Prabhat K. Sahu, Shyi-Long Lee. Intermolecular orbital repulsion effect on the blue-shifted hydrogen bond. Chemical Physics Letters, 2005; 406(1-3): 143-147. https://doi.org/10.1016/j.cplett.2005.02.070

Bushuev Yu.G. Strukturnye svoistva zhidkostei s razlichnymi tipami mezhmolekulyarnykh vzaimodeistvii po dannym komp'yuternogo modelirovaniya /Diss… dokt.khim.nauk, Ivanovo, 2001. 345 p. (In Russ.)

Dolgonosov A.M. Model' statsionarnogo neodnorodnogo elektronnogo gaza, Russ. J. Inorg. Chem., 2000; 45: 897-903.

Dolgonosov A.M. Determination of the size and energy of atoms within the framework of a multicomponent electron gas model, Rus. J. Phys. Chem., 2000; 74: 324-334.

Dolgonosov A.M. Teoriya obobshchennykh zaryadov dlya mezhatomnykh vzaimodeistvii, Russ. J. Phys. Chem. A, 2001; 75: 1659-1666. (In Russ.)

Dolgonosov A.M. Obobshchennyi zaryad v opisanii adsorbtsii v oblasti Genri, Russ. J. Phys. Chem. A, 2002; 76: 993-998. (In Russ.)

Dolgonosov A.M. Effekt ekranirovaniya v mezhatomnykh vzaimodeistviyakh, Russ. J. Phys. Chem. A, 2002; 76: 2015-2019. (In Russ.)

Dolgonosov A.M. O razlichii vesovykh mnozhitelei dlya  -elektrona i dlya -elektrona v raschetakh mezhatomnykh vzaimodeistvii, Russ. J. Phys. Chem. A, 2003; 77: 764-767.

Dolgonosov A.M. Zavisimost' atomnogo radiusa i potentsiala ionizatsii ot atomnogo nomera soglasno teorii mnogokomponentnogo elektronnogo gaza, Russ. J. Phys. Chem. A, 2008; 82: 2079-2084. (In Russ.)

Dolgonosov A.M. Model Elektronnogo Gaza i Teoriya Obobschennykh Zaryadov Dlya Opisaniya Mezhatomnykh Vzaimodeistviy i Adsorbtsii (Electron Gas Model and Theory of Generalized Charges for Description of Interatomic Interactions). M., LIBROKOM, 2009. (In Russ.)

Dolgonosov A.M. Understanding hydrogen bonding in terms of the theory of generalized charges, Journal of Structural Chemistry. 2019; 60(11): 1693-1702.

Dolgonosov A.M., Zaitceva E.A. Kharakteristika polyarnosti nepodvizhnoj fazy v gazovoj chromatografii na osnove teoreticheskogo opisaniya mezhmolekulyarnyh vzaimodejstvij. I. Sluchaj otsutstviya vodorodnyh svyazej. Sorbtsionnye I Khromatograficheskie Protsessy, 2014; 14(4), 578-590. (In Russ.)

Dolgonosov A.M., Zaitceva E.A. Kharakteristika polyarnosti nepodvizhnoj fazy v gazovoj chromatografii na osnove teoreticheskogo opisaniya mezhmolekulyarnyh vzaimodejstvij. II. Sluchaj vodorodnyh svyazej. Sorbtsionnye I Khromatograficheskie Protsessy, 2015; 15(3): 321-332. https://doi.org/10.17308/sorpchrom.2015.15/280 (In russ.)

Zaitceva E.A., Dolgonosov A.M. Teoreticheskaya ocenka kharakteristik selektivnosti gazochromatograficheskih nepodvizhnyh faz. Sorbtsionnye I Khromatograficheskie Protsessy, 2018, 18(5), 676-689. https://doi.org/10.17308/sorpchrom.2018.18/594

Zaitceva E.A., Dolgonosov A.M. Trekhparametricheskaya model' mezhmolekulyarnyh vzaimodejstvij kak osnova dlya klassifikacii i vybora nepodvizhnyh faz dlya gazovoj chromatografii. Sorbtsionnye I Khromatograficheskie Protsessy, 2019; 19(5): 525-541. https://doi.org/10.17308/sorpchrom.2019.19/1167 (In Russ.)

Dolgonosov A.M. Polyarnost' i gidrofil'nost' — fundamental'nye nezavisimye kharakteristiki chromatograficheskih nepodvizhnyh faz. Sorbtsionnye I Khromatograficheskie Protsessy, 2015; 15(3): 312-320. https://doi.org/10.17308/sorpchrom.2015.15/279 (In Russ.)

Zaitceva E.A. Obzor metodov klassifikacii nepodvizhnyh faz v gazovoj hromatografii. Sorbtsionnye I Khromatograficheskie Protsessy, 2020; 20(2): 175-196. https://doi.org/10.17308/sorpchrom.2020.20/2772 (In Russ.)

Dolgonosov A.M., Zaitceva E.A. A model of intermolecular interaction associated with hydrogen bond formation and its application to the characterization of the selectivity of chromatographic phases on the example of polyethylene glycols. Journal of Structural Chemistry, 2020; 61: 1233.

Dolgonosov A.M., Zaitceva E.A. Factors determining the selectivity of stationary phases for geometric isomers of fatty acids in gas–liquid chromatographic analysis. Journal of Analytical Chemistry, 2020; 75; 1599.

Dolgonosov A.M., Zaitceva E.A. Selectivity map of stationary phases: a graphical method for systematizing and searching for conditions for the gas chromatographic separation of polar substances. Journal of Analytical Chemistry, 2021; 76: 898.

Zaitceva E.A. Metod opisaniya selektivnosti zhidkikh nepodvizhnykh faz v analiticheskoy khromatografii polyarnykh organicheskikh soyedineniy i ikh izomerov. Dis. … kand. khim. nauk. Moskva: Institut geokhimii i analiticheskoy khimii im. V.I. Vernadskogo RAN. 2021. P. 123 http://www.geokhi.ru/Thesis/2021/Кандидатские/Зайцева/Диссертация_Зайцева_ЕА.pdf (last accessed 29.06.2022)

Zaitceva E.A., Dolgonosov A.A. Theoretical characterization of ionic liquids as stationary phases for gas chromatography. Sorbtsionnye I Khromatograficheskie Protsessy, 2022; 22(5): 598-611. https://doi.org/10.17308/sorpchrom.2022.22/10681

Zaitceva E.A., Dolgonosov A.M. Method for the Selection of Polar Stationary Phases for Gas-Liquid Chromatography based on the Theory of Intermolecular Interaction, In: V.P. Kolotov, N.S. Bezaeva (eds) Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences: 75th Anniversary of the Vernadsky Institute of the Russian Academy of Sciences. Springer, Cham. 2023, 495. https://doi.org/10.1007/978-3-031-09883-3_29.

Dolgonosov A.M. A model of hydrogen bond formation between the molecules in vapor and liquid, Journal of Structural Chemistry. 2020; 61(7): 1045-1058. https://doi.org/10.1134/S0022476620070069

Grosberg A.Yu., Khokhlov A.R. Statisticheskaya fizika makromolekul. M., Nauka. 1989. 344 p. (In Russ.)

Zaitceva E.A., Dolgonosov A.M. Theoretical calculation of the parameters of the three-parameter chromatographic phase characterization method I. Dispersion forces parameter – generalized charge. Sorbtsionnye I Khromatograficheskie Protsessy. 2024; 24(2): 209-226. https://doi.org/10.17308/sorpchrom.2024.24/12126 (In Russ.)

Dolgonosov A.M. The surface tension coefficients and critical temperatures of uniform nonpolar liquids from a priori calculations within the framework of the theory of generalized charges. Russian Chemical Bulletin, 2016; 65(4); 952-963.

Rahul Patil, Choyce A Weatherly, Daniel W. Armstrong. Chiral Gas Chromatography In book: Chiral Analysis. May 2018. https://doi.org/10.1016/B978-0-444-64027-7.00012-4

Daniel W. Armstrong, Yubing Tang, Timothy Ward, and Molly Nichols. Derivatized Cyclodextrins Immobilized on Fused-Silica Capillaries for Enantiomeric Separations via Capillary Electrophoresis, Gas Chromatography, or Supercritical Fluid Chromatography. Anal. Chem. 1993; 65; 1114-1117.

Eve Yiwen Zhou, Kang Le, and Daniel W. Annstrong. Determination and Use of Rohrschneider-McReynolds Constants for Chiral Stationary Phases Used in Capillary Gas Chromatography. Anal. Chem. 1995; 67: 849-857.

Suresh Seethapathy, Tadeusz Górecki. Applications of polydimethylsiloxane in analytical chemistry: A review. Analytica Chimica Acta, 2012; 750: 48-62

Published
2025-01-04
How to Cite
Zaitceva, E. A., & Dolgonosov, A. M. (2025). Theoretical calculation of the parameters of the three-parameter chromatographic phase characterization method II. Hydrogen bond parameter and hydrophilicity characteristic. Sorbtsionnye I Khromatograficheskie Protsessy, 24(6), 896-910. https://doi.org/10.17308/sorpchrom.2024.24/12567