Influence of temperature on the exchange of zinc and sodium ions on polymethacrylic cation exchange resin and the possibility of its use in separation processes

  • Olga T. Gavlina Lomonosov Moscow State University, Moscow, Russian Federation
  • Ekaterina A. Karpyuk Lomonosov Moscow State University, Moscow, Russian Federation
  • Vladimir A. Ivanov Lomonosov Moscow State University, Moscow, Russian Federation
  • Sergey I. Kargov Lomonosov Moscow State University, Moscow, Russian Federation
Keywords: polymethacrylic cation exchanger, ion exchange equilibrium, exchange of zinc and sodium ions, ion ex-change separation.

Abstract

The high selectivity of polymethacrylic cation exchanger to zinc ion from concentrated solutions of sodium chloride and sodium nitrate, as well as a significant increase in selectivity with increasing temperature, has been shown. The selectivity in the chloride system turned out to be lower than in the nitrate system due to the formation of chloride anionic zinc complexes in solution. When purifying concentrated solutions of alkali metal salts from impurities of zinc salts using polymethacrylic cation exchangers in the form of the same alkali metal ion at high temperatures, it is possible to increase the volumes of purified solutions compared to traditional conditions at room temperature. However, this positive effect manifests itself in the case of a nitrate system and is very insignificant in a chloride system due to the formation of anionic zinc chloride complexes in solution. It turned out that the use of two-temperature reagent-free separation techniques in the case of systems with zinc salts is not possible. It was found that after the ion exchanger in the column comes into equilibrium with the initial solution of a mixture of sodium and zinc salts at an elevated temperature, with a subsequent decrease in temperature and the selectivity of the ion exchanger to zinc when passing that same initial solution, effective and complete displacement of excess sorbed zinc is not observed. Thus, in the case of a mixed solution of sodium and zinc salts, two different stationary states of polymethacrylic cation exchanger are formed. The reason for this is the very high selectivity of the ion exchanger to zinc ion, as a result of which in a solution containing zinc chloride, the polymethacrylic ion exchanger becomes an inelastic rigid material.

Downloads

Download data is not yet available.

Author Biographies

Olga T. Gavlina, Lomonosov Moscow State University, Moscow, Russian Federation

Doctor of Chemistry, Senior Scientist. Department of Chemistry M.V. Lomonosov Moscow State University, Moscow, Russia, ogavlina@mail.ru

Ekaterina A. Karpyuk, Lomonosov Moscow State University, Moscow, Russian Federation

Doctor of Chemistry, Docent. Department of Chemistry M.V. Lomonosov Moscow State University, Moscow, Russia,  kat_il@mail.ru

Vladimir A. Ivanov, Lomonosov Moscow State University, Moscow, Russian Federation

Doctor of Chemistry, Professor. Department of Chemistry M.V. Lomonosov Moscow State University, Moscow, Russia, ivanov@phys.chem.msu.ru

Sergey I. Kargov, Lomonosov Moscow State University, Moscow, Russian Federation

Doctor of Chemistry, Professor. Department of Chemistry M.V. Lomonosov Moscow State University, Moscow, Russia, skargov@yandex.ru

References

Ivanov V.A., Timofeevskaya V.D., Gorshkov V.I., Drozdova N.V. The role of temperature in ion exchange processes of separation and purification. J. Radioanal. Nucl. Chem. 1996; 208(1): 23-45. https://doi.org/10.1007/BF02039748

Khamizov R.Kh., Ivanov V.A., Tikhonov N.A. Dual temperature methods of separation and concentration of elements in ion exchange columns. In: Ion Exchange and Solvent Extraction: A Series of Advances, Vol. 20, Ed.: A.K. SenGupta. Taylor & Francis Group, CRC Press. 2010: 171-232.

Khamizov R.Kh., Ivanov V.A., Madani A.A. Dual-temperature ion exchange: A review. React. Func. Polym. 2010; 70(8): 521-530. https://doi.org/10.1016/j.reactfunctpolym.2010.04.002

Ivanov V. A., Khamizov R. K. Role of temperature in ion-exchange processes of separation and purification. In: Ion-exchange chromatography and related techniquesю (Eds: P. Nesterenko, C. Poole, Y. Sun) Amsterdam, Netherlands: Elsevier, 2024: 591-614.

Van der Poll E.F., Sadie O. High AVT regime at Matimba power station impact on air cooled condensers and condensate polishing plant. Proc. ESCOM Power Plant Chemistry Symposium. Midrand, South Africa. 1994.

Ivanov V.A., Khamizov R.Kh. Ionnyi obmen. Kn.: Vysokochistye veshchestva (Red.: Churbanov M.F., Karpov Yu.A., Zlomanov V.P., Fyodorov V.A.). M., Nauchnyi mir. 2018: 105-139. (In Russ.).

Gregor H.P., Bregman J.I. Studies on ion exchange resins. IV. Selectivity coefficients of various cation exchangers towards univalent cations. J. Colloid Sсi. 1951; 6(4): 323-347. https://doi.org/10.1016/0095-8522(51)90003-7

Myers G.E., Boyd G.E. A thermodynamic calculation of cation exchange selectivities. J. Phys. Chem. 1956; 60(5): 521-529. https://doi.org/10.1021/j150539a003

Bonner O.D., Smith L.L. The effect of temperature on ion-exchange equilibria. I. The sodium-hydrogen and cupric-hydrogen exchanges. J. Phys. Chem. 1957; 61(12): 1614-1617. https://doi.org/10.1021/j150558a009

Matorina A.A., Popov A.N. Vliyanie temperatury na sostoyanie ionoobmennogo ravnovesiya. II Temperaturnye izmeneniya ionoobmennoi adsorbcii na sulfosmolakh. // Zhurn. Fiz. Khim. 1958; 32(12): 2772-2779. (In Russ.).

Bonner O.D., Pruett R.R. The effect of temperature on ion exchange equilibria. II. The ammonium–hydrogen and thallous-hydrogen exchanges. J. Phys. Chem. 1959; 63(9): 1417-1420. https://doi.org/10.1021/j150579a019

Bonner O.D., Pruett R.R. The effect of temperature on ion-exchange equilibria. III. Exchanges involving some divalent ions. J. Phys. Chem. 1959; 63(9): 1420-1423. https://doi.org/10.1021/j150579a020

Kraus K.A., Raridon R.J. Temperature dependence of some cation exchange equilibria in the range 0 to 200°. J. Phys. Chem. 1959.; 63(11): 1901-1907. https://doi.org/10.1021/j150581a026

Kraus K.A., Raridon R.J., Holcomb D.L. Anion exchange studies: a column method for measurement of ion exchange equilibria at high temperature. Temperature coefficient of the Br−–Cl− exchange reaction. Chromatogr. 1960; 3(1): 178-179. https://doi.org/10.1016/S0021-9673(01)96974-2

Bonner O.D., Dickel G., Brümmer H. The temperature and counter-ion dependency of cation exchange equilibria. Z. Phys. Chem. 1960; 259(1-2): 81-89. https://doi.org/10.1524/zpch.1960.25.1_2.081

Timofeevskaya V.D., Ivanov V.A., Gorshkov V.I. Influence of temperature on the equilibrium of Na+ – Me2+ (Me = Ca, Sr, Mg) exchange on KB-4 carboxyl cationite. Zhurn. Fiz. Khim. 1988; 62(9): 2531-2534. (In Russ.).

Ivanov V.A., Timofeevskaya V.D., Gorshkov V.I., Eliseeva T.V. Vliyanie temperatury na ravnovesie obmena ionov Ca2+–Na+ na karboksilnykh ionitakh. Zhurn. Fiz. Khim. 1991; 65(9): 2455-2460. (In Russ.)

Ivanov V.A., Gorshkov V.I., Timofeevskaya V.D., Drozdova N.V. Influence of temperature on ion-exchange equilibrium accompanied by complex formation in resins. React. Func. Polymers. 1998; 38(2-3): 205-218. https://doi.org/10.1016/S1381-5148(97)00162-4

Ivanov V.A., Timofeevskaya V.D., Drozdova N.V., Gorshkov V.I. E`ksperimental`noe issledovanie vliyaniya temperatury` na ravnovesie obmena raznozaryadny`x ionov na nerastvorimy`x sshity`x polie`lektrolitax. Zhurn. fiz. ximii. 2000; 74(4): 734-738. (In Russ.)

Ivanov V.A., Karpyuk E.A., Gavlina O.T., Kargov S.I. Superheated solutions in dual-temperature ion exchange separations. React. Func. Polym. 2018; 122(1): 107-115. https://doi.org/10.1016/j.reactfunctpolym.2017.11.009

Harjula R., Lehto J. The international workshop on uniform and reliable nomenclature, formulations and experimentation for ion exchange, Helsinki, Finland, May 30–June 1, 1994. React. Func. Polym. 1995; 27(2): 147-153. https://doi.org/10.1016/1381-5148(95)00039-I

Harjula R., Lehto J. Memorandum mezhdunarodnogo simpoziuma po unifikacii nomenklatury, formulirovok i eksperimentalnykh metodov pri izuchenii processov ionnogo obmena. Zhurn. Fiz. Khim. 1996; 70(9): 1723-1725. (In Russ.)

Ivanov V.A., Karpyuk E.A. Nekotorye aspekty termodinamiki ionnogo obmena. Sorbtsionnye I Khromatograficheskie Protsessy. 2015; 15(1): 19-34. (In Russ.)

Kraus K.A., Moore G.E. Anion Exchange Studies. VI. The Divalent Transition Elements Manganese to Zinc in Hydrochloric Acid. J. Am. Chem. Soc. 1953; 75(6): 1460-1462. https://doi.org/10.1021/ja01102a054

Riman V., Uolton G. Ionoobmennaya khromatografiya v analiticheskoi khimii. M., Mir, 1973: 359-360. (In Russ.)

Skorokhodov V.I., Radionov B.K., Goryaeva Yu.O. Sorbciya kompleksnykh ionov tsinka ionitami iz khloridnykh rastvorov. Zhurn. Prikl. Khim. 2004; 77(9): 1456-1461. (In Russ.)

Ivanov V.A., Timofeevskaya V.D., Gorshkov V.I. Ion-exchange separation of alkali and alkaline earth ions in concentrated solutions based on temperature changes. React. Func. Polym. 1992; 17(1): 101-107. https://doi.org/10.1016/0923-1137(92)90575-M

Karpyuk E.A., Titova O.I., Pastukhov A.V., Davankov V.A., Kargov S.I., Ivanov V.A. Complex formation of divalent cations with carboxylic acid resins as a factor determining different stationary states of their swelling. Solv. Ext. Ion Exch. 2016; 34(4): 362-374. https://doi.org/10.1080/07366299.2016.1155898

Park C.-H., Orozco-Avila I. Concentrating cellulases using a temperature–sensitive hydrogels: Effect of gel particle size and geometry. Biotechnol. Prog. 1993; 9(6): 640-646. https://doi.org/10.1021/bp00024a011

Vervoort S., Patlazhan S., Weyts J., Budtova T. Solvent release from highly swollen gels under compression. Polymer. 2005; 46(1): 121-127. https://doi.org/10.1016/j.polymer.2004.10.046

Karpyuk E.A., Pastuxov A.V., Gavlina O.T., Kargov S.I., Ivanov V.A. Uprugo-plasticheskie svoistva ionoobmennikov na osnove sshitykh polielektrolitov. Sorbtsionnye I Khromatograficheskie Protsessy. 2024; 24(2): 170-179. https://doi.org/10.17308/sorpchrom.2024.24/12123 (In Russ.)

Published
2025-01-06
How to Cite
Gavlina, O. T., Karpyuk, E. A., Ivanov, V. A., & Kargov, S. I. (2025). Influence of temperature on the exchange of zinc and sodium ions on polymethacrylic cation exchange resin and the possibility of its use in separation processes. Sorbtsionnye I Khromatograficheskie Protsessy, 24(6), 965-974. https://doi.org/10.17308/sorpchrom.2024.24/12576