Features of synthesis of polyacrylate nanospheres "core-shell" in the presence of polymer surfactant Pluronic P123

  • Dmitry M. Tochilov Voronezh state University, Voronezh
  • Olga V. Sleptsova Voronezh state University, Voronezh https://orcid.org/0009-0006-7467-275X
  • Lyudmila A. Korystina PoliLab Voronezh, JSC Voronezhsintezkauchuk, Voronezh,

Abstract

Emulsion polymerization in the presence of the polymer surfactant Pluronic P123 as an emulsifier synthesized polyacrylate nanospheres "core-shell" in the form of an aqueous dispersion. The polymer of the core is polybutylmethacrylate or polybutylacrylate, the polymer of the shell is a mesh poly-N,N-dimethylaminoethylmethacrylate. The nanoscale, spherical shape, and structure of polymer particles are confirmed by dynamic light scattering and transmission electron microscopy.

Core-shell polyacrylate nanospheres are aggregatively stable due to the non-electrostatic structural and mechanical factor provided by the nonionic polymer surfactant Pluronic P123 adsorbed on the particle surface. A small value of the electrokinetic potential of the particles is caused by the polarity of the core monomer.

The monodisperse state of the "core-shell" particles in the synthesized dispersions, proved by dynamic light scattering, suggests that the polymerization process occurs in Pluronic P123 micelles. The established adsorption capacity of the shell monomer N,N-dimethylaminoethylmethacrylate, in the absence of its micelle-forming ability, confirms the formation of core-shell particles during polymerization.

Downloads

Download data is not yet available.

Author Biographies

Dmitry M. Tochilov, Voronezh state University, Voronezh

postgraduate student, department of polymer science and colloid chemistry, Voronezh State University, Voronezh, Russia, e-mail: jeffray@mail.ru

Olga V. Sleptsova, Voronezh state University, Voronezh

Ph.D. (chemistry), associate prof., department of polymer science and colloid chemistry, Voronezh State University, Voronezh, Russia, e-mail: slepts@gmail.com

Lyudmila A. Korystina, PoliLab Voronezh, JSC Voronezhsintezkauchuk, Voronezh,

Ph.D., Chief Expert, Applied Elastomer Development, PolyLab Voronezh, JSC Voronezhsintezkauchuk, Voronezh, Russia, e-mail: KorystinaLA@vsk.sibur.ru

References

Nasir A., Kausar A., Younus A. A Re-view on Preparation, Properties and Applica-tions of Polymeric Nanoparticle-Based Mate-rials, Polymer-Plastics Technology and En-gineering. 2015; 54(4): 325-341. https://doi.org/10.1080/03602559.2014.958780

Kocak G., Tuncer C., Butun V. pH-Responsive polymers, The Royal Society of Chemistry: Polymer Chemistry. 2017; 8: 144-176. https://doi.org/10.1039/C6PY01872F

Crucho C.I.C., Barros M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods, Ma-terials Science and Engineering C. 2017; 80: 771-784. https://doi.org/10.1016/j.msec.2017.06.004

Wei B., Wang S., Song H., Liu H., Li J., Liu N. A review of recent progress in preparation of hollow polymer microspheres, Petroleum Science. 2009; 6: 306- 312. https://doi.org/10.1007/s12182-009-0049-1

Forster N., Schmidt S., Vana P. Tailor-ing Confinement: Nano-Carrier Synthesis via Z-RAFT Star Polymerization, Polymers. 2015; 7: 695-716. https://doi.org/10.3390/polym7040695

Okubo M., Konishi Y., Inohara T., Minami H. Size effect of monomer droplets on the production of hollow polymer parti-cles by suspension polymerization, Colloid Polymer Science. 2003; 281: 302-307. https://doi.org/10.1007/s00396-002-0774-0

Chang M.-W., Stride E., Edirisinghe M. A New Method for the Preparation of Monoporous Hollow Microspheres, Ameri-can Chemical Society. 2010; 26(7): 5115-5121. https://doi.org/10.1021/la903592s

McKenzie B.E., Friedrich H., Wirix M.J.M., Visser J.F., Monaghan O.R., Bo-mans P.H.H., Nudelman F., Holder S.J., Sommerdijk N.A.J. Controlling Internal Pore Sizes in Bicontinuous Polymeric Nan-ospheres, Angewandte Chemie (Internation-al Edition in English). 2015; 127(8): 2457-2461. https://doi.org/10.1002/ange.201408811

Shen J., Xu J., Hu Y., Li J., Kan C. Fabrication of amino-containing hollow polymer latex and its composite with inor-ganic nanoparticles, Colloid and Polymer Science. 2017; 295(4): 679-688. https://doi.org/10.1007/s00396-017-4059-z

Crucho C.I.C. Stimuli-Responsive Polymeric Nanoparticles for Nanomedicine, ChemMedChem. 2014; 10(1): 24-38. https://doi.org/10.1002/cmdc.201402290

Zhu Y., Liao L. Applications of Nanoparticles for Anticancer Drug delivery: A Review, Journal of Nanoscience and Nanotechnology. 2015; 14(7): 4753-4773. https://doi.org/10.1166/jnn.2015.10298

Monerris M.J., Broglia M.F., Yslas E.I., Barbero C.A., Rivarola C.R. Antibacte-rial polymeric nanocomposites synthesized by in-situ photoreduction of silver ions with-out additives inside biocompatible hydrogel matrices based on N-isopropylacrylamide and derivatives, eXPRESS Polymer Letters. 2017; 11(12): 946-962. https://doi.org/10.3144/expresspolymlett.2017.91

Pagels R.F., Prud'homme R.K. Pol-ymeric nanoparticles and microparticles for the delivery of peptides, biologics, and solu-ble therapeutics, Journal Of Controlled Re-lease. 2015; 219: 519-535. https://doi.org/10.1016/j.jconrel.2015.09.001

Chen G., Wang Y., Xie R., Gong S. A review on core-shell structured uni-molecular nanoparticles for biomedical appli-cations, Advanced Drug Delivery Reviews. 2018; 130: 58-72. https://doi.org/10.1016/j.addr.2018.07.008

Colson Y.L., Grinstaff M.W. Bio-logically Responsive Polymeric Nanoparti-cles for Drug Delivery, Advanced Materials. 2012; 24(28): 3878-3886. https://doi.org/10.1002/adma.201200420

Lam S.J., Wang E.H.H., Boyer C., Qiao G.G. Antimicrobial polymeric nanopar-ticles, Progress in Polymer Science. 2017; 76: 40-64. https://doi.org/10.1016/j.progpolymsci.2017.07.007

Guterres S.S., Alves M.P., Pohl-mann A.R. Polymeric Nanoparticles, Nano-spheres and Nanocapsules, for Cutaneous Applications, SAGE Journals: Drug Target Insights. 2007; 2: 147-157. https://doi.org/10.1177/117739280700200002

Zhan C., Yu G., Lu Y., Wang L., Wujcik E., Wei S. Conductive polymer nanocomposites: a critical review of modern advanced devices, Journal of Materials Chemistry. 2017; 5(7): 1569-1585. https://doi.org/10.1039/C6TC04269D

Lia H., Xu F., Wang L. A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering, Journal of Materials Science. 2018; 53(2): 8677-8698. https://doi.org/10.1007/s10853-018-2095-9

Riess G. Micellization of block co-polymers, Progress in Polymer Science. 2003; 28(7): 1107-1170. https://doi.org/10.1016/S0079-6700(03)00015-7

Singh V., Khullar P., Dave P.N., Kaur N. Micelles, mixed micelles, and appli-cations of polyoxypropylene (PPO)- poly-oxyethylen (PEO)-polyoxypropylene (PPO) triblock polymers, International Journal of Industrial Chemistry. 2013; 4(12): 1-18. https://doi.org/10.1186/2228-5547-4-12

Alexandridis P. Poly(ethylene ox-ide)/poly(propylene oxide) block copolymer surfactants, Current Opinion in Colloid & Interface Science. 1997; 2: 478-489. https://doi.org/10.1016/S1359-0294(97)80095-7

Alexandridis P., Holzwarth J.F., Hatton T.A. Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous So-lutions: Thermodynamics of Copolymer As-sociation, Macromolecules. 1994; 27: 2414-2425. https://doi.org/10.1021/ma00087a009

Lau B.K., Wang Q., Sun W., Li L. Micellization to gelation of a triblock copol-ymer in water: Thermoreversibility and scal-ing, Polymer Science Part B: Polymer Phys-ics. 2004; 42(10): 2014-2025. https://doi.org/10.1002/polb.20105

Chaibundit C., Ricardo N.M.P.C., Costa F.M.L.L., Yeates S.G., Booth C. Mi-cellization and Gelation of Mixed Copoly-mers P123 and F127 in Aqueous Solution, Langmuir. 2007; 23(18): 9229-9236. https://doi.org/10.1021/la701157j

Sakai T., Kurosawa H., Okada T., Mishima S. Vesicle formation in mixture of a PEO-PPO-PEO block copolymer (Pluronic P123) and a nonionic surfactant (Span 65) in water, Colloids and Surfaces A: Physico-chemical and Engineering Aspects. 2011; 389(1-3): 82-89. https://doi.org/10.1016/j.colsurfa.2011.08.046

He Z., Alexandridis P. Micellization Thermodynamics of Pluronic P123 (EO20PO70EO20) Amphiphilic Block Co-polymer in Aqueous Ethylamminium Nitrate (EAN) Solution, Polymers. 2017; 10(1): 1-18. https://doi.org/10.3390/polym10010032

Shtykov S.N. Chemical analysis in nanoreactors: main concepts and applica-tions, Journal of Analytical Chemistry. 2002; 57(10): 859-868.

Published
2025-04-04
How to Cite
Tochilov, D. M., Sleptsova, O. V., & Korystina, L. A. (2025). Features of synthesis of polyacrylate nanospheres "core-shell" in the presence of polymer surfactant Pluronic P123. Sorbtsionnye I Khromatograficheskie Protsessy, 25(1), 101-110. https://doi.org/10.17308/sorpchrom.2025.25/12798