The Distribution Features of the Copper Migration Forms Content in the Water Along the Continuum "the Mius Estuary – the Taganrog Bay of the Azov Sea"

  • Yury A. Fedorov Institute of Earth Sciences, Southern Federal University https://orcid.org/0000-0001-7411-3030
  • Daria F. Kostenko Institute of Earth Sciences, Southern Federal University
  • Irina V. Dotsenko Institute of Earth Sciences, Southern Federal University
  • Victoria I. Сhepurnaya Institute of Earth Sciences, Southern Federal University
Keywords: estuary, the Mius River, the Miussky Liman, the Taganrog Bay, water, copper migration forms, suspended matter, pH, salinity

Abstract

The aim is to study the peculiarities of gross copper content distribution as well as dissolved and suspended forms of its migration in water of the cascade system "the Miuss River – the Miuss estuary – the Taganrog Bay of the Azov Sea". Materials and methods. Water samples from the Mius River, the Mius estuary and theTaganrog Bay were taken to determine copper concentrations in unfiltered (gross content) and filtered (dissolved form of migration) samples using standard techniques and portable equipment. Mathematical and statistical analysis was carried out to assess correlation relations between physico-chemical parameters and content of different forms of copper in water bodies. Results and discussion. Average concentrations of copper in the waters of the cascade system were compared with its content at the global and regional levels. Experimental data have shown an excess of the content of the dissolved form of migration of copper in water in the section "the Mius River - the Taganrog Bay" in relation to its global background. In this connection the element is recognized as a priority pollutant heavy metal for the Azov Sea basin. The predominant form of copper migration turned out to be suspended. It is shown that the average levels of specific copper concentration in suspended water in the Mius River estuary and the Taganrog Bay are similar to the levels of its gross concentration in coastal soils, but significantly lower than in atmospheric dust and soils of Rostov-on-Don. This indicates the leading role of atmospheric solid-phase deposition in the formation of its specific concentration levels in the suspended form of migration. Conclusions. Within the studied cascade system, there are two barrier zones - the zone of mixing of waters of the Mius River with waters of the Miusky estuary and the zone of mixing of waters of the estuary with waters of the Taganrog Bay. Along the section "river - liman - bay" the gross content of copper and its forms of migration experience symbiotic fluctuations, caused by changes of physical and chemical parameters and the presence of "turbidity clouds", moving under the influence of wind along the water area of the liman.

Downloads

Download data is not yet available.

Author Biographies

Yury A. Fedorov, Institute of Earth Sciences, Southern Federal University

Doctor of Geographical Sciences, Professor, Head of the Department of Physical Geography, Ecology and Nature Protection of the Institute of Earth Sciences, Southern Federal University, Rostov-on-Don, Russian Federation

Daria F. Kostenko, Institute of Earth Sciences, Southern Federal University

Postgraduate Student, Department of Physical Geography, Ecology and Nature Protection of the Institute of Earth Sciences, Southern Federal University, Rostov-on-Don, Russian Federation

Irina V. Dotsenko, Institute of Earth Sciences, Southern Federal University

PhD in Geographical Sciences, Associate Professor, Department of Physical Geography, Ecology and Nature Protection of the Institute of Earth Sciences, Southern Federal University, Rostov-on-Don, Russian Federation

Victoria I. Сhepurnaya, Institute of Earth Sciences, Southern Federal University

Postgraduate Student, Department of Physical Geography, Ecology and Nature Protection of the Institute of Earth Sciences, Southern Federal University, Rostov-on-Don, Russian Federation

References

1. Bargal'i R. Biogeokhimiya nazemnykh rasteniy [Biogeochemistry of terrestrial plants]. Moscow: GEOS, 2005. 457 р. (In Russ.)
2. Bezuglova O. S., Privalenko V. V., Ostroborod'ko N. P. Biogeokhimicheskaya kharakteristika pochv poberezh'ya Taganrogskogo zaliva. Ekosistemnye issledovaniya Azovskogo morya i poberezh'ya. T. IV [Bioge-
ochemical characteristics of soils of the coast of the Taganrog Bay. Ecosystem studies of the Sea of Azov and the coast. Vol. IV] / Pod. red. G. G. Matishova, Yu. A. Zhdanova, N.V. Lebedeva i dr. Apatity: Izd. KNTs RAN, 2002. 447 p. (In Russ.)
3. Bocharov V. L. Gidrogeoekologicheskie problemy pri osvoenii sul'fidnykh medno-nikelevykh mestorozhdeniy Voronezhskogo kristallicheskogo massiva [Hydrogeoecological problems in the development of sulfide copper-nickel deposits of the Voronezh crystal massif]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geologiya, 2015, no. 1, pp. 125-127. (In Russ.)
4. Buzmakov S.A., Dzyuba E. A. Opredelenie fonovogo soderzhaniya tsiklicheskikh elementov v pochvakh Tulymskogo kamnya (Permskiy kray) [Determination of the background content of cyclic elements in the soils of the Tulymsky stone (Perm Krai)]. Izvestiya vysshikh uchebnykh zavedeniy. Severokavkazskiy region. Seriya: Estestvennye nauki, Rostov-na-Donu, 2016, no. 3, pp. 49-57. (In Russ.)
5. Dotsenko I. V., Mikhaylenko A. V., Fedorov Yu. A. i dr. Prostranstvenno-vremennye zakonomernosti raspredeleniya tyazhelykh metallov v vode Taganrogskogo zaliva [Spatial and temporal patterns of distribution of heavy metals in the water of the Taganrog Bay]. Materialy mezhdunarodnoy konferentsii «Problemy antropogennoy transformatsii prirodnoy sredy», 2019, pp. 56-58. (In Russ.)
6. Klenkin A.A., Korpakova I. G., Pavlenko I. F. i dr. Ekosistema Azovskogo morya: antropogennoe zagryaznenie [Spatial and temporal patterns of distribution of heavy metals in the water of the Taganrog Bay]. Krasnodar: Azovskiy nauchno-issledovatel'skiy institut rybnogo khozyaystva, 2007. 324 p. (In Russ.)
7. Mikhaylenko A. V., Fedorov Yu. A., Dotsenko I. V. Tyazhelye metally v komponentakh landshafta Azovskogo moray [Heavy metals in the components of the landscape of the Sea of Azov]. Rostov-on-Don: Izd-vo YuFU, 2018. 214 p. (In Russ.)
8. Mur D. V., Ramamurti S. Tyazhelye metally v prirodnykh vodakh [Heavy metals in natural waters]. Moscow: Mir, 1987. 286 p. (In Russ.)
9. Normativy kachestva vody vodnykh ob"ektov rybokhozyaystvennogo znacheniya, v tom chisle normativy predel'no dopustimykh kontsentratsiy vrednykh veshchestv v vodakh vodnykh ob"ektov rybokhozyaystvennogo
znacheniya. Prilozhenie k prikazu Minsel'khoza Rossii ot 13.12.2016 g. No 552 (s izmeneniyami na 10.03.2020 g.) [Standards of water quality of water bodies of fishery significance, including standards of maximum permissible concentrations of harmful substances in the waters of water bodies of fishery significance. Appendix to the order of the Ministry of Agriculture of Russia dated 13.12.2016 no. 552]. – URL: URL (accessed 10.03.2020). – Text:electronic. (In Russ.)
10. Perel'man A. I., Kasimov N. S. Geokhimiya landshafta [Geochemistry of landscape]. Moscow, 1999. 610 p. (In Russ.)
11. Privalenko V. V., Bezuglova O. S. Ekologicheskie problemy antropogennykh landshaftov Rostovskoy oblasti. T.1. Ekologiya goroda Rostova-na-Donu [Ecological problems of anthropogenic landscapes of the Rostov region. Vol. 1. Ecology of the city of Rostov-on-Don]. Rostov-on-Don: Izdatel'stvo SKNTs VSh, 2003. 290 p. (In Russ.)
12. RD 52.24.377-2008. Massovaya kontsentratsiya alyuminiya, berilliya, vanadiya, zheleza, kadmiya, kobal'ta, margantsa, medi, molibdena, nikelya, svintsa, serebra, khroma i tsinka v vodakh. Metodika vypolneniya izmereniy metodom atomnoy absorbtsii s pryamoy elektrotermicheskoy atomizatsiey prob [RD 52.24.377-2008. The mass concentration of aluminum, beryllium, vanadium, iron, cadmium, cobalt, manganese, copper, molybdenum, nickel, lead, silver, chromium and zinc in the waters. The method of performing measurements by atomic absorption with direct electrothermal atomization of samples]. Rostov-on-Don: Gidrokhimicheskiy institut, 2008. 34 p. (In Russ.)
13. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi [Guidelines for the chemical analysis of land surface waters]. M-vo prirodnykh resursov i ekologii Rossiyskoy Federatsii, Federal'naya sluzhba po gidrometeorologii i monitoringu okruzhayushchey sredy (Rosgidromet), Gos. uchrezhdenie "Gidrokhim. in-t", 2009. 21 p. (In Russ.)
14. Roeva N. N., Rovinskiy F. Ya., Kononov E. Ya. Spetsificheskie osobennosti povedeniya tyazhelykh metallov v razlichnykh prirodnykh sredakh [Specific features of the behavior of heavy metals in various natural environments]. Zhurnal analiticheskoy khimii, 1996, vol. 51, no. 4, pp. 384-397. (In Russ.)
15. Fedorov Yu.A. Stabil'nye izotopy i evolyutsiya gidrosfery [Stable isotopes and the evolution of the hydrosphere]. Moscow: MO RF Tsentr «Istina», 1999. 370 p. (In Russ.)
16. Fedorov Yu. A., Grinenko V. A., Nikanorov A. M. Izotopno-khimicheskie pokazateli genezisa sul'fatov prirodnykh vod ugledobyvayushchikh rayonov (na primere Vostochnogo Donbassa) [Isotopic and chemical indicators of the Genesis of sulphate in natural waters of the coal-mining areas (on the example of the Eastern Donbass)]. DAN SSSR, 1990, vol. 313, no. 3, pp. 693-696. (In Russ.)
17. Fedorov Yu. A., Gar'kusha D. N., Chepurnaya V. I. i dr. Kadmiy v vode po kontinuumu «estuariy r. Mius-Taganrogskiy zaliv Azovskogo morya» [Cadmium in water along the continuum "estuary of the Mius River-Taganrog Bay of the Sea of Azov"]. Geograficheskiy vestnik, 2021, no. 3 (58), pp. 115-129. (In Russ.)
18. Fedorov Yu.A., Gar'kusha D. N., Dmitrik L. Yu. i dr. Geokhimiya zheleza v sisteme reka Mius – Miusskiy liman –Taganrogskiy zaliv Azovskogo morya [Geochemistry of iron in the system of the Mius River – Mius estuary – Taganrog Bay of the Sea of Azov]. Astrakhanskiy vestnik ekologicheskogo obrazovaniya, 2020, no. 5 (59), pp. 172-181. (In Russ.)
19. Fedorov Yu. A., Sapozhnikov V. V., Agatova A. I. i dr. Kompleksnye ekosistemnye issledovaniya v rossiyskoy chasti Azovskogo morya (18-25 iyulya 2006 g.) [Complex ecosystem studies in the Russian part of the Sea of Azov (July 18-25, 2006)]. Okeanologiya, 2007, vol. 47, no. 2, pp. 316-319. (In Russ.)
20. Fedorov Yu. A., Dmitrik L. Yu., Dotsenko I. V. About the relationship of physical and chemical parameters with the content of various migration and occurrence iron forms in the Sea of Azov. 20th International Multidisciplinary Scientific GeoConference, SGEM 2020, Ecology, Economics, Education and Legislation Conference Proceedings (Albena, Bulgaria), vol. 20, book 5.1, pp. 35-42.
21. Fedorov Yu. A., Kuznetsov A. N., Dotsenko I.V et al. Artificial radionuclides, mercury, lead, and oil components in sediment cores as markers of the Anthropocene Epoch. EGU General Assembly 2021, online, 19-30 Apr 2021, EGU21-14484. DOI
22. Goldberg, E. D. Minor elements in sea water. Chemical oceanography, 1965, v.1, pp. 163-196.
23. Zamulina I. V., Gorovtsov A. V., Minkina T. M. et al. Soil organic matter and biological activity under long-term contamination with copper. Environmental Geochemistry and Health, 2021. DOI
24. Long E. R., Macdonald D. D., Smith S. L. et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage, 1995, 19 (1), рр. 81-97.
25. U.S. Geological Survey, Mineral Commodity Summaries, January 2000. 198 p.
26. U.S. Geological Survey, Mineral Commodity Summaries, January 2002. 197 p.
27. U.S. Geological Survey, Mineral Commodity Summaries, February 2007. 195 p.
28. U.S. Geological Survey, Mineral Commodity Summaries, January 2014. 196 p.
29. U.S. Geological Survey, Mineral Commodity Summaries, January 2017. 202 p.
30. U.S. Geological Survey, Mineral Commodity Summaries, February 2020. 200 p.
31. World Health Organization. Guidelines for drinking-water quality. 4th edition. Geneva, 2011. 564 p.
Published
2022-03-28
How to Cite
Fedorov, Y. A., Kostenko, D. F., Dotsenko, I. V., & СhepurnayaV. I. (2022). The Distribution Features of the Copper Migration Forms Content in the Water Along the Continuum "the Mius Estuary – the Taganrog Bay of the Azov Sea". Proceedings of Voronezh State University. Series: Geography. Geoecology, (1), 36-49. https://doi.org/10.17308/geo.2022.1/9084
Section
Geography