The effect of solution-combustion mode on the structure, morphology and size-sensitive photocatalytic performance of MgFe2O4 nanopowders
Abstract
Ferrites play a significant role in a number of applications from magnetic ceramic to multifunctional catalytic and antimicrobial material. As a catalytic material, it is crucial to have not only high activity but also be made from abounded elements via energy-efficient techniques, to make it valuable for industrial application. Magnesioferrite nanocrystalline powder series were prepared via solution–combustion route while varying fuel/oxidizer ratio. They were investigated by XRD, BET, SEM, DRS, and Fenton-like photocatalytic activity. Temperature-time profiles were measured for the combustion reaction of all mixtures. Results show a strong correlation between fuel content and temperature, structure, and morphology.
But de-spite average surface area and crystallite size, the sample synthesized with excess fuel showed high dye adsorption capacity and catalytic activity.
Downloads
References
Oliveira T. P., Rodrigues S. F., Marques G. N., … Oliveira, M. M.. CuFe2O4 for the degradation of dyes under
isible light. Catalysts. 2022;12(6): 623. https://doi.org/10.3390/catal12060623
Ali M. A., Idris M. R., Quayum M. E.. Fabrication of ZnO nanoparticles by solution-combustion method for the photocatalytic degradation of organic dye. Journal of Nanostructure in Chemistry. 2013;3(1): 2–7. https://doi.org/10.1186/2193-8865-3-36
Kefeni K. K., Mamba B. B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review. Sustainable Materials and Technologies. 2020;23: e00140. https://doi.org/10.1016/j.susmat.2019.e00140
Bowker M. Photocatalytic hydrogen production and oxygenate photoreforming. Catalysis Letters. 2012;142(8): 923–929. https://doi.org/10.1007/s10562-012-0875-4
Lyulyukin M. N., Kurenkova A. Y., Bukhtiyarov A. V., Kozlova E. A. Carbon dioxide reduction under visible light: a comparison of cadmium sulfide and titania photocatalysts. Mendeleev Communications. 2020;30(2): 192–194. https://doi.org/10.1016/j.mencom.2020.03.021
Muhammad N. A., Wang Y., Muhammad F. E., He T. Photoreduction of carbon dioxide using strontium zirconate nanoparticles. Science China Materials. 2015;58(8): 634–639. https://doi.org/10.1007/s40843-015-0077-7
Chandrasekaran S., Bowen C., Zhang P., Li Z., Yuan Q., Ren X. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. Journal of Materials Chemistry A. 2018;6(24): 11078–11104. https://doi.org/10.1039/c8ta03669a
Martinson K. D., Beliaeva A. D., Sakhno D. D., … Popkov V. I. Synthesis, structure, and antimicrobial performance of NixZn1–xFe2O4 (x = 0, 0.3, 0.7, 1.0) magnetic powders toward E. coli, B. cereus, S. citreus, and C. tropicalis. Water. 2022;14(3): 454. https://doi.org/10.3390/w14030454
Maksoud M. I. A. A, El-Sayyad G. S., Ashour A. H., … El-Okr M. M. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial Pathogenesis. 2019;127: 144–158. https://doi.org/10.1016/j.micpath.2018.11.045
Martinson K. D., Belyak V. E., Sakhno D. D., Kiryanov N. V., Chebanenko M. I., Popkov V. I. Effect of fuel type on solution combustion synthesis and photocatalytic activity of NiFe2O4 nanopowders. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6): 792–798. https://doi.org/10.17586/2220-8054-2021-12-6-792-798
Lomanova N. A., Panchuk V. V., Semenov V. G., Pleshakov I. V., Volkov M. P., Gusarov V. V. Bismuth orthoferrite nanocrystals: magnetic characteristics and size effects. Ferroelectrics. 2020;569(1): 240–250. https://doi.org/10.1080/00150193.2020.1822683
Lomanova N. A., Tomkovich M. V., Osipov A. V., … Gusarov V. V. Formation of Bi1–xCaxFeO3–d nanocrystals via glycine-nitrate combustion. Russian Journal of General Chemistry. 2019;89(9): 1843–1850. https://doi.org/10.1134/s1070363219090196
Popkov V. I., Almjasheva O. V., Gusarov V. V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry. 2015;85(6): 1370–1375. https://doi.org/10.1134/s107036321506002x
Kopeychenko E. I., Mittova I. Y., Perov N. S., Nguyen A. T., Mittova V. O., Alekhina Y. A., Salmanov I. V. Nanocrystalline heterogeneous multiferroics based on yttrium ferrite (core) with calcium zirconate (titanate) shell. Russian Journal of General Chemistry. 2020;90(6): 1030–1035. https://doi.org/10.1134/s1070363220060158
Tomina E. V., Kurkin N. A., Korol’ A. K., … Bui V. X. Spray pyrolysis synthesis, electrical and magnetic properties of HoxBi1-xFeO3 nanocrystals. Journal of Materials Science: Materials in Electronics. 2022;33(32): 24594–24605. https://doi.org/10.1007/s10854-022-09170-0
Vo Q. M., Mittova V. O., Nguyen V. H., Mittova I. Y., Nguyen A. T. Strontium doping as a means of influencing the characteristics of neodymium orthoferrite nanocrystals synthesized by co-precipitation method. Journal of Materials Science: Materials in Electronics. 2021;32(22): 26944–26954. https://doi.org/10.1007/s10854-021-07068-x
Kopeychenko E. I., Mittova I. Y., Perov N. S., … Pham V. Synthesis, composition, and magnetic properties of cadmium-doped lanthanum ferrite nanopowders. Inorganic Materials. 2021;57(4): 367–371. https://doi.org/10.1134/s0020168521040075
Tikhanova S. M., Lebedev L. A., Martinson K. D., … Popkov V. I. The synthesis of novel heterojunction h-bFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New Journal of Chemistry. 2021;45(3): 1541–1550. https://doi.org/10.1039/d0nj04895j
Abbas R., Martinson K. D., Kiseleva T. Y., Markov G. P., Tyapkin P. Y., Popkov V. I. Effect of fuel type on the solution combustion synthesis, structure, and magnetic properties of YIG nanocrystals. Materials Today Communications. 2022;32: 103866. https://doi.org/10.1016/j.mtcomm.2022.103866
Martinson K. D., Belyak V. E., Sakhno D. D., Chebanenko M. I., Panteleev I. B. Mn–Zn ferrite nanoparticles by calcining amorphous products of solution combustion synthesis: preparation and magnetic behavior. International Journal of Self-Propagating High-Temperature Synthesis. 2022;31(1): 17–23. https://doi.org/10.3103/s106138622201006x
Martinson K. D., Belyak V. E., Sakhno D. D., … Popkov V. I. Solution combustion assisted synthesis of ultra-magnetically soft LiZnTiMn ferrite ceramics. Journal of Alloys and Compounds. 2022;894: 162554. https://doi.org/10.1016/j.jallcom.2021.162554
Martinson K. D., Sakhno D. D., Belyak V. E., Kondrashkova I. S. Ni0.4Zn0.6Fe2O4 nanopowders by solution-combustion synthesis: Influence of red/ox ratio on their morphology, structure, and magnetic properties. International Journal of Self-Propagating High-Temperature Synthesis. 2020;29(4): 202–207. https://doi.org/10.3103/s106138622004007x
Ivanets A. I., Roshchina M. Yu., Prozorovich V. G. Ibuprofen oxidative degradation in the presence of Fenton-catalyst based on MgFe2O4 nanoparticles. Proceedings of the National Academy of Sciences of Belarus, Chemical
eries. 2019;55(3): 345–351. https://doi.org/10.29235/1561-8331-2019-55-3-345-351
Varma A., Mukasyan A. S., Rogahev A. S., Manukyan K. V. Solution combustion synthesis of nanoscale materials. Chemical Reviews. 2016;116(23): 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279
Wang X., Qin M., Fang F., Jia B., Wu H., Qu X., Volinsky A. A. Solution combustion synthesis of nanostructured iron oxides with controllable morphology, composition and electrochemical performance. Ceramics International. 2018;44(4): 4237– 4247. https://doi.org/10.1016/j.ceramint.2017.12.004
Siddique F., Gonzalez-Cortes S., Mirzaei A., Xiao T., Rafiq M. A., Zhang X. Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts. Nanoscale. 2022;14: 11806–11868. https://doi.org/10.1039/d2nr02714c
Ghosh S. K., Prakash A., Datta S., Roy S. K., Basu D. Effect of fuel characteristics on synthesis of calcium hydroxyapatite by solution combustion route. Bulletin of Materials Science. 2010;33(1): 7–16. https://doi.org/10.1007/s12034-010-0010-3
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.