The effect of solution-combustion mode on the structure, morphology and size-sensitive photocatalytic performance of MgFe2O4 nanopowders

Keywords: Photocatalyst, Ferrites, Spinel, Solution-combustion synthesis, Fenton-like process

Abstract

         Ferrites play a significant role in a number of applications from magnetic ceramic to multifunctional catalytic and antimicrobial material. As a catalytic material, it is crucial to have not only high activity but also be made from abounded elements via energy-efficient techniques, to make it valuable for industrial application. Magnesioferrite nanocrystalline powder series were prepared via solution–combustion route while varying fuel/oxidizer ratio. They were investigated by XRD, BET, SEM, DRS, and Fenton-like photocatalytic activity. Temperature-time profiles were measured for the combustion reaction of all mixtures. Results show a strong correlation between fuel content and temperature, structure, and morphology.
But de-spite average surface area and crystallite size, the sample synthesized with excess fuel showed high dye adsorption capacity and catalytic activity.

Downloads

Download data is not yet available.

Author Biographies

Lev A. Lebedev, Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

Specialist, Junior Research Fellow,
Hydrogen Energy Lab, Ioffe Institute, (Saint Petersburg,
Russian Federation)

Maxim I. Tenevich, Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

PhD student, Junior Research
Fellow, Hydrogen Energy Lab, Ioffe Institute, (Saint
Petersburg, Russian Federation)

Vadim I. Popkov, Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

Cand. Sci. (Chem.), Lab Head,
Hydrogen Energy Lab, Ioffe Institute, (Saint Petersburg,
Russian Federation)

References

Oliveira T. P., Rodrigues S. F., Marques G. N., … Oliveira, M. M.. CuFe2O4 for the degradation of dyes under

isible light. Catalysts. 2022;12(6): 623. https://doi.org/10.3390/catal12060623

Ali M. A., Idris M. R., Quayum M. E.. Fabrication of ZnO nanoparticles by solution-combustion method for the photocatalytic degradation of organic dye. Journal of Nanostructure in Chemistry. 2013;3(1): 2–7. https://doi.org/10.1186/2193-8865-3-36

Kefeni K. K., Mamba B. B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review. Sustainable Materials and Technologies. 2020;23: e00140. https://doi.org/10.1016/j.susmat.2019.e00140

Bowker M. Photocatalytic hydrogen production and oxygenate photoreforming. Catalysis Letters. 2012;142(8): 923–929. https://doi.org/10.1007/s10562-012-0875-4

Lyulyukin M. N., Kurenkova A. Y., Bukhtiyarov A. V., Kozlova E. A. Carbon dioxide reduction under visible light: a comparison of cadmium sulfide and titania photocatalysts. Mendeleev Communications. 2020;30(2): 192–194. https://doi.org/10.1016/j.mencom.2020.03.021

Muhammad N. A., Wang Y., Muhammad F. E., He T. Photoreduction of carbon dioxide using strontium zirconate nanoparticles. Science China Materials. 2015;58(8): 634–639. https://doi.org/10.1007/s40843-015-0077-7

Chandrasekaran S., Bowen C., Zhang P., Li Z., Yuan Q., Ren X. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. Journal of Materials Chemistry A. 2018;6(24): 11078–11104. https://doi.org/10.1039/c8ta03669a

Martinson K. D., Beliaeva A. D., Sakhno D. D., … Popkov V. I. Synthesis, structure, and antimicrobial performance of NixZn1–xFe2O4 (x = 0, 0.3, 0.7, 1.0) magnetic powders toward E. coli, B. cereus, S. citreus, and C. tropicalis. Water. 2022;14(3): 454. https://doi.org/10.3390/w14030454

Maksoud M. I. A. A, El-Sayyad G. S., Ashour A. H., … El-Okr M. M. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial Pathogenesis. 2019;127: 144–158. https://doi.org/10.1016/j.micpath.2018.11.045

Martinson K. D., Belyak V. E., Sakhno D. D., Kiryanov N. V., Chebanenko M. I., Popkov V. I. Effect of fuel type on solution combustion synthesis and photocatalytic activity of NiFe2O4 nanopowders. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(6): 792–798. https://doi.org/10.17586/2220-8054-2021-12-6-792-798

Lomanova N. A., Panchuk V. V., Semenov V. G., Pleshakov I. V., Volkov M. P., Gusarov V. V. Bismuth orthoferrite nanocrystals: magnetic characteristics and size effects. Ferroelectrics. 2020;569(1): 240–250. https://doi.org/10.1080/00150193.2020.1822683

Lomanova N. A., Tomkovich M. V., Osipov A. V., … Gusarov V. V. Formation of Bi1–xCaxFeO3–d nanocrystals via glycine-nitrate combustion. Russian Journal of General Chemistry. 2019;89(9): 1843–1850. https://doi.org/10.1134/s1070363219090196

Popkov V. I., Almjasheva O. V., Gusarov V. V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry. 2015;85(6): 1370–1375. https://doi.org/10.1134/s107036321506002x

Kopeychenko E. I., Mittova I. Y., Perov N. S., Nguyen A. T., Mittova V. O., Alekhina Y. A., Salmanov I. V. Nanocrystalline heterogeneous multiferroics based on yttrium ferrite (core) with calcium zirconate (titanate) shell. Russian Journal of General Chemistry. 2020;90(6): 1030–1035. https://doi.org/10.1134/s1070363220060158

Tomina E. V., Kurkin N. A., Korol’ A. K., … Bui V. X. Spray pyrolysis synthesis, electrical and magnetic properties of HoxBi1-xFeO3 nanocrystals. Journal of Materials Science: Materials in Electronics. 2022;33(32): 24594–24605. https://doi.org/10.1007/s10854-022-09170-0

Vo Q. M., Mittova V. O., Nguyen V. H., Mittova I. Y., Nguyen A. T. Strontium doping as a means of influencing the characteristics of neodymium orthoferrite nanocrystals synthesized by co-precipitation method. Journal of Materials Science: Materials in Electronics. 2021;32(22): 26944–26954. https://doi.org/10.1007/s10854-021-07068-x

Kopeychenko E. I., Mittova I. Y., Perov N. S., … Pham V. Synthesis, composition, and magnetic properties of cadmium-doped lanthanum ferrite nanopowders. Inorganic Materials. 2021;57(4): 367–371. https://doi.org/10.1134/s0020168521040075

Tikhanova S. M., Lebedev L. A., Martinson K. D., … Popkov V. I. The synthesis of novel heterojunction h-bFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New Journal of Chemistry. 2021;45(3): 1541–1550. https://doi.org/10.1039/d0nj04895j

Abbas R., Martinson K. D., Kiseleva T. Y., Markov G. P., Tyapkin P. Y., Popkov V. I. Effect of fuel type on the solution combustion synthesis, structure, and magnetic properties of YIG nanocrystals. Materials Today Communications. 2022;32: 103866. https://doi.org/10.1016/j.mtcomm.2022.103866

Martinson K. D., Belyak V. E., Sakhno D. D., Chebanenko M. I., Panteleev I. B. Mn–Zn ferrite nanoparticles by calcining amorphous products of solution combustion synthesis: preparation and magnetic behavior. International Journal of Self-Propagating High-Temperature Synthesis. 2022;31(1): 17–23. https://doi.org/10.3103/s106138622201006x

Martinson K. D., Belyak V. E., Sakhno D. D., … Popkov V. I. Solution combustion assisted synthesis of ultra-magnetically soft LiZnTiMn ferrite ceramics. Journal of Alloys and Compounds. 2022;894: 162554. https://doi.org/10.1016/j.jallcom.2021.162554

Martinson K. D., Sakhno D. D., Belyak V. E., Kondrashkova I. S. Ni0.4Zn0.6Fe2O4 nanopowders by solution-combustion synthesis: Influence of red/ox ratio on their morphology, structure, and magnetic properties. International Journal of Self-Propagating High-Temperature Synthesis. 2020;29(4): 202–207. https://doi.org/10.3103/s106138622004007x

Ivanets A. I., Roshchina M. Yu., Prozorovich V. G. Ibuprofen oxidative degradation in the presence of Fenton-catalyst based on MgFe2O4 nanoparticles. Proceedings of the National Academy of Sciences of Belarus, Chemical

eries. 2019;55(3): 345–351. https://doi.org/10.29235/1561-8331-2019-55-3-345-351

Varma A., Mukasyan A. S., Rogahev A. S., Manukyan K. V. Solution combustion synthesis of nanoscale materials. Chemical Reviews. 2016;116(23): 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

Wang X., Qin M., Fang F., Jia B., Wu H., Qu X., Volinsky A. A. Solution combustion synthesis of nanostructured iron oxides with controllable morphology, composition and electrochemical performance. Ceramics International. 2018;44(4): 4237– 4247. https://doi.org/10.1016/j.ceramint.2017.12.004

Siddique F., Gonzalez-Cortes S., Mirzaei A., Xiao T., Rafiq M. A., Zhang X. Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts. Nanoscale. 2022;14: 11806–11868. https://doi.org/10.1039/d2nr02714c

Ghosh S. K., Prakash A., Datta S., Roy S. K., Basu D. Effect of fuel characteristics on synthesis of calcium hydroxyapatite by solution combustion route. Bulletin of Materials Science. 2010;33(1): 7–16. https://doi.org/10.1007/s12034-010-0010-3

Published
2022-11-29
How to Cite
Lebedev, L. A., Tenevich, M. I., & Popkov, V. I. (2022). The effect of solution-combustion mode on the structure, morphology and size-sensitive photocatalytic performance of MgFe2O4 nanopowders . Condensed Matter and Interphases, 24(4), 496-503. https://doi.org/10.17308/kcmf.2022.24/10645
Section
Original articles

Most read articles by the same author(s)