Synthesis, structure, and photo-Fenton activity of PrFeO3-TiO2 mesoporous nanocomposites

Keywords: Solution-combustion synthesis, Praseodymium orthoferrite, Titanium Oxide, Nanocomposites, Photocatalysts, Fenton-like reactions

Abstract

Porous nanocomposites based on PrFeO3-TiO2 were synthesized using the glycine-nitrate combustion method with different values of mass content of TiO2 (0–7.5 %) and subsequent heat treatment in air. The results of X-ray phase analysis and Raman spectroscopy confirmed the presence of ultradispersed TiO2, structurally close to that of anatase. The morphology, specific surface area, and porous structure of the obtained powders were characterized by scanning electron microscopy and adsorption-structural analysis, the results of which showed that the samples had a foam-like mesoporous structure.
The specific surface area and the average pore size were in the ranges of 7.6–17.8 m2/g and 7.2–15.2 nm, respectively, and varied depending on the TiO2 content. The optical properties of the nanocomposites were studied by UV-visible diffuse reflection spectroscopy, the energy of the band gap was calculated as 2.11–2.26 eV. The photocatalytic activity of PrFeO3‑TiO2 nanocomposites was investigated in the process of photo-Fenton-like degradation of methyl violet under the action of visible light. It was shown that the maximum reaction rate constant was 0.095 min-1, which is ten times higher than the value for the known orthoferrite-based analogs. The obtained photocatalysts were also characterized by their high cyclic stability. Based on the studies carried out, the obtained porous PrFeO3-TiO2 nanocomposites can be considered to be a
promising basis for photocatalysts applied in advanced oxidative processes of aqueous media purification from organic pollutants.

Downloads

Download data is not yet available.

Author Biographies

Anna S. Seroglazova, Saint-Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation; Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

student at the Departament
of Physical Chemistry, Saint Petersburg State
Technological Institute (University), Russian
Federation. Laboratory assistent, Ioffe Physical-
Technical Institute of the Russian Academy of
Sciences, Russian Federation; e-mail: annaseroglazova@yandex.ru

Maria I. Chebanenko, Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

Junior Researcher at the
Laboratory of Materials and Processes of Hydrogen
Energy, Ioffe Physical-Technical Institute of the
Russian Academy of Sciences, Russian Federation;
e-mail: m_chebanenko@list.ru

Vadim I. Popkov, Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

PhD in Chemistry, Senior Research
Fellow, Head of the Laboratory of Materials and
Processes of Hydrogen Energy, Ioffe Physical-Technical
Institute of the Russian Academy of Sciences, Russian
Federation; e-mail: vip-07@yandex.ru

References

Zhou Z., Guo L., Yang H., Liu Q., Ye F. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. Journal of Alloys and Compounds. 2014;583: 21–31. https://doi.org/10.1016/j.jallcom.2013.08.129

Lü X., Xie J., Shu H., Liu J., Yin C., Lin J. Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology.2007;138(3): 289–292. https://doi.org/10.1016/j.mseb.2007.01.003

Martinson K. D., Ivanov V. A., Chebanenko M. I., Panchuk V. V., Semenov V. G., Popkov V. I. Facile combustion synthesis of TbFeO3 nanocrystals with hexagonal and orthorhombic structure. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(6): 694–700. https://doi.org/10.17586/2220-8054-2019-10-6-694-700

Ding J., Lü X., Shu H., Xie J., Zhang H. Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2010;171(1-3): 31–34. https://doi.org/10.1016/j.mseb.2010.03.050

Nguyen A. T., Nguyen N. T., Mittova I. Y., Perov N. S., Mittova V. O., Hoang T. C., Nguyen V. M., Nguyen V. H., Pham V., Bui X. V. Crystal structure, optical and magnetic properties of PrFeO3 nanoparticles prepared by modified co-precipitation method. Processing and Application of Ceramics. 2020;14(4): 355-361. https://doi.org/10.2298/PAC2004355N

Akbashev A. R., Semisalova A. S., Perov N. S., Kaul A. R. Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Applied Physics Letters. 2011; 99 (12): 2011–2014. https://doi.org/10.1063/1.3643043

Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. Journal of Crystal Growth. 2017;467: 88–92. https://doi.org/10.1016/j.jcrysgro.2017.03.022

Martinson K. D., Kondrashkova I. S., Omarov S. O., Sladkovskiy D. A., Kiselev A. S., Kiseleva T. Y., Popkov V. I. Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Advanced Powder Technology. 2020;31(1): 402–408. https://doi.org/10.1016/j.apt.2019.10.033

Nguyen A. T., Nguyen V. Y., Mittova I. Ya., Mittova V. O., Viryutina E. L., Hoang C. Ch. T., Nguyen Tr. L. T., Bui X. V., Do T. H. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4): 468–473.

https://doi.org/10.17586/2220-8054-2020-11-4-468-473

Li L., Zhang M., Tian P., Gu W., Wang X. Synergistic photocatalytic activity of LnFeO3 (Ln=Pr, Y) perovskites under visible light illumination. Ceramics International. 2014;40(9): 13813–13817. https://doi.org/10.1016/j.ceramint.2014.05.097

Freeman E., Kumar S., Thomas S. R., Pickering H., Fermin D. J., Eslava S. PrFeO3 photocathodes prepared through spray pyrolysis. ChemElectroChem. 2020;7(6): 1365–1372. https://doi.org/10.1002/celc.201902005

Tang P., Xie X., Chen H., Lv C., Ding Y. Synthesis of nanoparticulate PrFeO3 by sol-gel method and its visible-light photocatalytic activity. Ferroelectrics. 2019;546(1): 181–187. https://doi.org/10.1080/00150193.2019.1592470

Qin C., Li Z., Chen G., Zhao Y., Lin T. Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes. Journal of Power Sources. 2015;285: 178–184. https://doi.org/10.1016/j.jpowsour.2015.03.096

Thirumalairajan S., Girija K., Ganesh I., Mangalaraj D., Viswanathan C., Balamurugan A., Ponpandian N. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-as-sembly process and their associated photocatalytic activity. Chemical Engineering Journal. 2012;209: 420–428. https://doi.org/10.1016/j.cej.2012.08.012

Rusevova K., Köferstein R., Rosell M., Richnow H. H., Kopinke F. D., Georgi A. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chemical Engineering Journal. 2014;239: 322–331. https://doi.org/10.1016/j.cej.2013.11.025

Kondrashkova I. S., Martinson K. D., Zakharova N. V., Popkov V. I. Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion. Russian Journal of General Chemistry. 2018;88(12): 2465–2471. https://doi.org/10.1134/S1070363218120022

Wen W., Wu J. M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Advances. 2014;4(101): 58090–58100. https://doi.org/10.1039/c4ra10145f

Popkov V. I., Martinson K. D., Kondrashkova I. S., Enikeeva M. O., Nevedomskiy V. N., Panchuk V. V., Semenov V. G., Volkov M. P., Pleshakov I. V. SCS-assisted production of EuFeO3 core-shell nanoparticles: formation process, structural features and magnetic behavior. Journal of Alloys and Compounds. 2021;859: 157812. https://doi.org/10.1016/j.jallcom.2020.157812

Tikhanova S. M., Lebedev L. A., Martinson K. D., Chebanenko M. I., Buryanenko I. V., Semenov V. G., Nevedomskiy V. N., Popkov V. I. Synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New Journal of Chemistry. 2021;45(3): 1541–1550. https://doi.org/10.1039/D0NJ04895J

Mir F. A., Sharma S. K., Kumar R. Magnetizations and magneto-transport properties of Ni-doped PrFeO3 thin films. Chinese Physics B. 2014;23(4): 048101. https://doi.org/10.1088/1674-1056/23/4/048101

Rehman F., Sayed M., Khan J. A., Shah L. A., Shah N. S., Khan H. M., Khattak R. Degradation of crystal violet dye by fenton and photo-fenton oxidation processes. Zeitschrift Fur Physikalische Chemie. 2018;232(12): 1771–1786. https://doi.org/10.1515/zpch-2017-1099

. Luo W, Zhu L., Wang N., Tang H., Cao M., She Y. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental Science and Technology. 2010;44(5): 1786–1791. https://doi.org/10.1021/es903390g

Ju L., Chen Z., Fang L., Dong W., Zheng F., Shen M. Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles. Journal of the American Ceramic Society. 2011;94(10): 3418–3424. https://doi.org/10.1111/j.1551-2916.2011.04522.x

Shi S., Xu J., Li L. Preparation and photocatalytic activity of ZnO nanorods and ZnO/Cu2O nanocomposites. Main Group Chemistry. 2017;16(1): 47–55. https://doi.org/10.3233/MGC-160224

Kim J. Y., Kang S. H., Kim H. S., Sung Y. E. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells. Langmuir. 2010;26(4): 2864–2870. https://doi.org/10.1021/la902931w

Cam T. S., Vishnevskaya T. A., Omarov S. O., Nevedomskiy V. N., Popkov V. I.,Urea–nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: the effect of Red/Ox ratio. Journal of Materials Science. 2020;55(26): 11891–11906. https://doi.org/10.1007/s10853-020-04857-3

Faisal M., Harraz F. A., Ismail A. A., El-Toni A. M., Al-Sayari S. A., Al-Hajry A., Al-Assiri M. S. Novel mesoporous NiO/TiO2 nanocomposites with enhanced photocatalytic activity under visible light illumination. Ceramics International. 2018;44(6): 7047–7056. https://doi.org/10.1016/j.cera-mint.2018.01.140

Mu J., Chen B., Zhang M., Guo Z., Zhang P., Zhang Z., Sun Y., Shao C., Liu Y. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Applied Materials & Interfaces. 2012;4(1): 424–430. https://doi.org/10.1021/am201499r

Yu H., Yu J., Cheng B. Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air. Chemosphere. 2007;66(11): 2050–2057. https://doi.org/10.1016/j.chemosphere.2006.09.080

Boulbar E. Le, Millon E., Cachoncinlle C., Hakim B., Ntsoenzok E. Optical properties of rareearth-doped TiO2 anatase and rutile thin films grown by pulsed-laser deposition. Thin Solid Films. 2013;553:13–16. https://doi.org/10.1016/j.tsf.2013.11.032

Ismail A. A., Bahnemann D. W. Mesoporous titania photocatalysts: Preparation, characterization and reaction mechanisms. Journal of Materials Chemistry. 2011;21(32): 11686–11707. https://doi.org/10.1039/c1jm10407a

Yadav H. M., Kolekar T. V., Barge A. S., Thorat N. D., Delekar S. D., Kim B. M., Kim B. J., Kim J. S. Enhanced visible-light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol-gel method. Journal of Materials Science: Materials in Electronics. 2015;27(1): 526-534.

https://doi.org/10.1007/s10854-015-3785-6

Rozenberg G. K., Pasternak M. P., Xu W. M., Dubrovinsky L. S., Carlson S., Taylor R. D. Consequences of pressure-instigated spin crossover in RFeO3 perovskites; a volume collapse with no symmetry modification. Europhysics Letters. 2005;71(2): 228–234. https://doi.org/10.1209/epl/i2005-10071-9

Kotlovanova N. E., Matveeva A. N., Omarov S. O., Sokolov V. V., Akbaeva D. N., Popkov V. I. Formation and acid-base surface properties of highly dispersed h-Al2O3 nanopowders. Inorganic Materials. 2018;54(4): 392–400. https://doi.org/10.1134/S0020168518040052

Khaliullin S. M., Zhuravlev V. D., Ermakova L. V., Buldakova L. Y., Yanchenko M. Y., Porotnikova N. M. Solution combustion synthesis of ZnO using binary fuel (glycine + citric acid). International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4): 226–232. https://doi.org/10.3103/S1061386219040058

Ismail A. A., Robben L., Bahnemann D. W. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. ChemPhysChem. 2011;12(5): 982–991. https://doi.org/10.1002/cphc.201000936

Peymani-Motlagh S. M., Sobhani-Nasab A., Rostami M., Sobati H., Eghbali-Arani M., Fasihi-Ramandi M., Ganjali M. R., Rahimi-Nasrabadi M. Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt-nickel ferrite. Journal of Materials Science: Materials in Electronics. 2019;30(7): 6902–6909. https://doi.org/10.1007/s10854-019-01005-9

Abdellahi M., Abhari A. S., Bahmanpour M. Preparation and characterization of orthoferrite PrFeO3 nanoceramic. Ceramics International. 2016;42(4): 4637–4641. https://doi.org/10.1016/j.ceramint.2015.12.027

Goldstein S., Meyerstein D. Comments: on the mechanism of the Fenton-like reaction. Accounts of Chemical Research. 1999;32(7): 547–550. https://doi.org/10.1021/ar9800789

Ćirković J., Radojković A., Luković Golić D., Tasić N., Čizmić M., Branković G., Branković Z. Visible- light photocatalytic degradation of Mordant Blue 9 by single-phase BiFeO3 nanoparticles. Journal of Environmental Chemical Engineering. 2021;9(1): 104587. https://doi.org/10.1016/j.jece.2020.104587

Published
2021-11-24
How to Cite
Seroglazova, A. S., Chebanenko, M. I., & Popkov, V. I. (2021). Synthesis, structure, and photo-Fenton activity of PrFeO3-TiO2 mesoporous nanocomposites. Condensed Matter and Interphases, 23(4), 548-560. https://doi.org/10.17308/kcmf.2021.23/3674
Section
Original articles