Synthesis, structure, and photo-Fenton activity of PrFeO3-TiO2 mesoporous nanocomposites

Keywords: Solution-combustion synthesis, Praseodymium orthoferrite, Titanium Oxide, Nanocomposites, Photocatalysts, Fenton-like reactions


Porous nanocomposites based on PrFeO3-TiO2 were synthesized using the glycine-nitrate combustion method with different values of mass content of TiO2 (0–7.5 %) and subsequent heat treatment in air. The results of X-ray phase analysis and Raman spectroscopy confirmed the presence of ultradispersed TiO2, structurally close to that of anatase. The morphology, specific surface area, and porous structure of the obtained powders were characterized by scanning electron microscopy and adsorption-structural analysis, the results of which showed that the samples had a foam-like mesoporous structure.
The specific surface area and the average pore size were in the ranges of 7.6–17.8 m2/g and 7.2–15.2 nm, respectively, and varied depending on the TiO2 content. The optical properties of the nanocomposites were studied by UV-visible diffuse reflection spectroscopy, the energy of the band gap was calculated as 2.11–2.26 eV. The photocatalytic activity of PrFeO3‑TiO2 nanocomposites was investigated in the process of photo-Fenton-like degradation of methyl violet under the action of visible light. It was shown that the maximum reaction rate constant was 0.095 min-1, which is ten times higher than the value for the known orthoferrite-based analogs. The obtained photocatalysts were also characterized by their high cyclic stability. Based on the studies carried out, the obtained porous PrFeO3-TiO2 nanocomposites can be considered to be a
promising basis for photocatalysts applied in advanced oxidative processes of aqueous media purification from organic pollutants.


Download data is not yet available.

Author Biographies

Anna S. Seroglazova, Saint-Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation; Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

student at the Departament
of Physical Chemistry, Saint Petersburg State
Technological Institute (University), Russian
Federation. Laboratory assistent, Ioffe Physical-
Technical Institute of the Russian Academy of
Sciences, Russian Federation; e-mail:

Maria I. Chebanenko, Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

Junior Researcher at the
Laboratory of Materials and Processes of Hydrogen
Energy, Ioffe Physical-Technical Institute of the
Russian Academy of Sciences, Russian Federation;

Vadim I. Popkov, Ioffe Institute, 26 Politekhnicheskaya str., Saint Petersburg 194021, Russian Federation

PhD in Chemistry, Senior Research
Fellow, Head of the Laboratory of Materials and
Processes of Hydrogen Energy, Ioffe Physical-Technical
Institute of the Russian Academy of Sciences, Russian
Federation; e-mail:


Zhou Z., Guo L., Yang H., Liu Q., Ye F. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. Journal of Alloys and Compounds. 2014;583: 21–31.

Lü X., Xie J., Shu H., Liu J., Yin C., Lin J. Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology.2007;138(3): 289–292.

Martinson K. D., Ivanov V. A., Chebanenko M. I., Panchuk V. V., Semenov V. G., Popkov V. I. Facile combustion synthesis of TbFeO3 nanocrystals with hexagonal and orthorhombic structure. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(6): 694–700.

Ding J., Lü X., Shu H., Xie J., Zhang H. Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2010;171(1-3): 31–34.

Nguyen A. T., Nguyen N. T., Mittova I. Y., Perov N. S., Mittova V. O., Hoang T. C., Nguyen V. M., Nguyen V. H., Pham V., Bui X. V. Crystal structure, optical and magnetic properties of PrFeO3 nanoparticles prepared by modified co-precipitation method. Processing and Application of Ceramics. 2020;14(4): 355-361.

Akbashev A. R., Semisalova A. S., Perov N. S., Kaul A. R. Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Applied Physics Letters. 2011; 99 (12): 2011–2014.

Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. Journal of Crystal Growth. 2017;467: 88–92.

Martinson K. D., Kondrashkova I. S., Omarov S. O., Sladkovskiy D. A., Kiselev A. S., Kiseleva T. Y., Popkov V. I. Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Advanced Powder Technology. 2020;31(1): 402–408.

Nguyen A. T., Nguyen V. Y., Mittova I. Ya., Mittova V. O., Viryutina E. L., Hoang C. Ch. T., Nguyen Tr. L. T., Bui X. V., Do T. H. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4): 468–473.

Li L., Zhang M., Tian P., Gu W., Wang X. Synergistic photocatalytic activity of LnFeO3 (Ln=Pr, Y) perovskites under visible light illumination. Ceramics International. 2014;40(9): 13813–13817.

Freeman E., Kumar S., Thomas S. R., Pickering H., Fermin D. J., Eslava S. PrFeO3 photocathodes prepared through spray pyrolysis. ChemElectroChem. 2020;7(6): 1365–1372.

Tang P., Xie X., Chen H., Lv C., Ding Y. Synthesis of nanoparticulate PrFeO3 by sol-gel method and its visible-light photocatalytic activity. Ferroelectrics. 2019;546(1): 181–187.

Qin C., Li Z., Chen G., Zhao Y., Lin T. Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes. Journal of Power Sources. 2015;285: 178–184.

Thirumalairajan S., Girija K., Ganesh I., Mangalaraj D., Viswanathan C., Balamurugan A., Ponpandian N. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-as-sembly process and their associated photocatalytic activity. Chemical Engineering Journal. 2012;209: 420–428.

Rusevova K., Köferstein R., Rosell M., Richnow H. H., Kopinke F. D., Georgi A. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chemical Engineering Journal. 2014;239: 322–331.

Kondrashkova I. S., Martinson K. D., Zakharova N. V., Popkov V. I. Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion. Russian Journal of General Chemistry. 2018;88(12): 2465–2471.

Wen W., Wu J. M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Advances. 2014;4(101): 58090–58100.

Popkov V. I., Martinson K. D., Kondrashkova I. S., Enikeeva M. O., Nevedomskiy V. N., Panchuk V. V., Semenov V. G., Volkov M. P., Pleshakov I. V. SCS-assisted production of EuFeO3 core-shell nanoparticles: formation process, structural features and magnetic behavior. Journal of Alloys and Compounds. 2021;859: 157812.

Tikhanova S. M., Lebedev L. A., Martinson K. D., Chebanenko M. I., Buryanenko I. V., Semenov V. G., Nevedomskiy V. N., Popkov V. I. Synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New Journal of Chemistry. 2021;45(3): 1541–1550.

Mir F. A., Sharma S. K., Kumar R. Magnetizations and magneto-transport properties of Ni-doped PrFeO3 thin films. Chinese Physics B. 2014;23(4): 048101.

Rehman F., Sayed M., Khan J. A., Shah L. A., Shah N. S., Khan H. M., Khattak R. Degradation of crystal violet dye by fenton and photo-fenton oxidation processes. Zeitschrift Fur Physikalische Chemie. 2018;232(12): 1771–1786.

. Luo W, Zhu L., Wang N., Tang H., Cao M., She Y. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental Science and Technology. 2010;44(5): 1786–1791.

Ju L., Chen Z., Fang L., Dong W., Zheng F., Shen M. Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles. Journal of the American Ceramic Society. 2011;94(10): 3418–3424.

Shi S., Xu J., Li L. Preparation and photocatalytic activity of ZnO nanorods and ZnO/Cu2O nanocomposites. Main Group Chemistry. 2017;16(1): 47–55.

Kim J. Y., Kang S. H., Kim H. S., Sung Y. E. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells. Langmuir. 2010;26(4): 2864–2870.

Cam T. S., Vishnevskaya T. A., Omarov S. O., Nevedomskiy V. N., Popkov V. I.,Urea–nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: the effect of Red/Ox ratio. Journal of Materials Science. 2020;55(26): 11891–11906.

Faisal M., Harraz F. A., Ismail A. A., El-Toni A. M., Al-Sayari S. A., Al-Hajry A., Al-Assiri M. S. Novel mesoporous NiO/TiO2 nanocomposites with enhanced photocatalytic activity under visible light illumination. Ceramics International. 2018;44(6): 7047–7056.

Mu J., Chen B., Zhang M., Guo Z., Zhang P., Zhang Z., Sun Y., Shao C., Liu Y. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Applied Materials & Interfaces. 2012;4(1): 424–430.

Yu H., Yu J., Cheng B. Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air. Chemosphere. 2007;66(11): 2050–2057.

Boulbar E. Le, Millon E., Cachoncinlle C., Hakim B., Ntsoenzok E. Optical properties of rareearth-doped TiO2 anatase and rutile thin films grown by pulsed-laser deposition. Thin Solid Films. 2013;553:13–16.

Ismail A. A., Bahnemann D. W. Mesoporous titania photocatalysts: Preparation, characterization and reaction mechanisms. Journal of Materials Chemistry. 2011;21(32): 11686–11707.

Yadav H. M., Kolekar T. V., Barge A. S., Thorat N. D., Delekar S. D., Kim B. M., Kim B. J., Kim J. S. Enhanced visible-light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol-gel method. Journal of Materials Science: Materials in Electronics. 2015;27(1): 526-534.

Rozenberg G. K., Pasternak M. P., Xu W. M., Dubrovinsky L. S., Carlson S., Taylor R. D. Consequences of pressure-instigated spin crossover in RFeO3 perovskites; a volume collapse with no symmetry modification. Europhysics Letters. 2005;71(2): 228–234.

Kotlovanova N. E., Matveeva A. N., Omarov S. O., Sokolov V. V., Akbaeva D. N., Popkov V. I. Formation and acid-base surface properties of highly dispersed h-Al2O3 nanopowders. Inorganic Materials. 2018;54(4): 392–400.

Khaliullin S. M., Zhuravlev V. D., Ermakova L. V., Buldakova L. Y., Yanchenko M. Y., Porotnikova N. M. Solution combustion synthesis of ZnO using binary fuel (glycine + citric acid). International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4): 226–232.

Ismail A. A., Robben L., Bahnemann D. W. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. ChemPhysChem. 2011;12(5): 982–991.

Peymani-Motlagh S. M., Sobhani-Nasab A., Rostami M., Sobati H., Eghbali-Arani M., Fasihi-Ramandi M., Ganjali M. R., Rahimi-Nasrabadi M. Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt-nickel ferrite. Journal of Materials Science: Materials in Electronics. 2019;30(7): 6902–6909.

Abdellahi M., Abhari A. S., Bahmanpour M. Preparation and characterization of orthoferrite PrFeO3 nanoceramic. Ceramics International. 2016;42(4): 4637–4641.

Goldstein S., Meyerstein D. Comments: on the mechanism of the Fenton-like reaction. Accounts of Chemical Research. 1999;32(7): 547–550.

Ćirković J., Radojković A., Luković Golić D., Tasić N., Čizmić M., Branković G., Branković Z. Visible- light photocatalytic degradation of Mordant Blue 9 by single-phase BiFeO3 nanoparticles. Journal of Environmental Chemical Engineering. 2021;9(1): 104587.

How to Cite
Seroglazova, A. S., Chebanenko, M. I., & Popkov, V. I. (2021). Synthesis, structure, and photo-Fenton activity of PrFeO3-TiO2 mesoporous nanocomposites. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(4), 548-560.
Original articles