Синтез, структура и фотофентоноподобная активность мезопористых нанокомпозитов PrFeO3–TiO2
Аннотация
Пористые нанокомпозиты на основе PrFeO3–TiO2 были синтезированы методом глицин-нитратного горения с различным массовым содержанием TiO2 (0-7.5 %) и последующей термообработкой на воздухе. Результаты рентгенофазового анализа и Рамановской спектроскопии показали наличие TiO2 в виде ультрадисперсной фазы структурно близкой к анатазу. Морфология, удельная поверхность и пористая структура полученных порошков была охарактеризована методом сканирующей электронной микроскопии и адсорбционно-структурного анализа, по результатам которых установлено, что образцы имеют пенообразную мезопористую структуру. Площадь удельной поверхности и средний размер пор находятся в диапазоне 7.6–17.8 м2/г и 7.2–15.2 нм соответственно и меняются в зависимости от содержания TiO2. Оптические свойства нанокомпозитов были исследованы методом УФ-видимой спектроскопии диффузного отражения, по результатам которой определена энергия запрещенной зоны, находящаяся в диапазоне значений 2.11–2.26 эВ. Фотокаталитическая активность нанокомпозитов PrFeO3–TiO2 была исследована
в процессе фотофентоноподобной деградации метилового фиолетового под действием видимого света. Было показано, что максимальная константа скорости реакции составляет 0.095 мин–1, что в десятки раз выше, чем для известных аналогов на основе ортоферритов. Полученные фотокатализаторы также характеризуются высокой циклической стабильностью работы. На основании проведенных исследований полученные пористые нанокомпозиты PrFeO3-TiO2 могут рассматриваться в качестве перспективной основы фотокатализаторов для продвинутых
окислительных процессов очистки водных сред от органических загрязнителей.
Скачивания
Литература
Zhou Z., Guo L., Yang H., Liu Q., Ye F. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. Journal of Alloys and Compounds. 2014;583: 21–31. https://doi.org/10.1016/j.jallcom.2013.08.129
Lü X., Xie J., Shu H., Liu J., Yin C., Lin J. Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology.2007;138(3): 289–292. https://doi.org/10.1016/j.mseb.2007.01.003
Martinson K. D., Ivanov V. A., Chebanenko M. I., Panchuk V. V., Semenov V. G., Popkov V. I. Facile combustion synthesis of TbFeO3 nanocrystals with hexagonal and orthorhombic structure. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(6): 694–700. https://doi.org/10.17586/2220-8054-2019-10-6-694-700
Ding J., Lü X., Shu H., Xie J., Zhang H. Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2010;171(1-3): 31–34. https://doi.org/10.1016/j.mseb.2010.03.050
Nguyen A. T., Nguyen N. T., Mittova I. Y., Perov N. S., Mittova V. O., Hoang T. C., Nguyen V. M., Nguyen V. H., Pham V., Bui X. V. Crystal structure, optical and magnetic properties of PrFeO3 nanoparticles prepared by modified co-precipitation method. Processing and Application of Ceramics. 2020;14(4): 355-361. https://doi.org/10.2298/PAC2004355N
Akbashev A. R., Semisalova A. S., Perov N. S., Kaul A. R. Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Applied Physics Letters. 2011; 99 (12): 2011–2014. https://doi.org/10.1063/1.3643043
Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. Journal of Crystal Growth. 2017;467: 88–92. https://doi.org/10.1016/j.jcrysgro.2017.03.022
Martinson K. D., Kondrashkova I. S., Omarov S. O., Sladkovskiy D. A., Kiselev A. S., Kiseleva T. Y., Popkov V. I. Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Advanced Powder Technology. 2020;31(1): 402–408. https://doi.org/10.1016/j.apt.2019.10.033
Nguyen A. T., Nguyen V. Y., Mittova I. Ya., Mittova V. O., Viryutina E. L., Hoang C. Ch. T., Nguyen Tr. L. T., Bui X. V., Do T. H. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4): 468–473.
https://doi.org/10.17586/2220-8054-2020-11-4-468-473
Li L., Zhang M., Tian P., Gu W., Wang X. Synergistic photocatalytic activity of LnFeO3 (Ln=Pr, Y) perovskites under visible light illumination. Ceramics International. 2014;40(9): 13813–13817. https://doi.org/10.1016/j.ceramint.2014.05.097
Freeman E., Kumar S., Thomas S. R., Pickering H., Fermin D. J., Eslava S. PrFeO3 photocathodes prepared through spray pyrolysis. ChemElectroChem. 2020;7(6): 1365–1372. https://doi.org/10.1002/celc.201902005
Tang P., Xie X., Chen H., Lv C., Ding Y. Synthesis of nanoparticulate PrFeO3 by sol-gel method and its visible-light photocatalytic activity. Ferroelectrics. 2019;546(1): 181–187. https://doi.org/10.1080/00150193.2019.1592470
Qin C., Li Z., Chen G., Zhao Y., Lin T. Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes. Journal of Power Sources. 2015;285: 178–184. https://doi.org/10.1016/j.jpowsour.2015.03.096
Thirumalairajan S., Girija K., Ganesh I., Mangalaraj D., Viswanathan C., Balamurugan A., Ponpandian N. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-as-sembly process and their associated photocatalytic activity. Chemical Engineering Journal. 2012;209: 420–428. https://doi.org/10.1016/j.cej.2012.08.012
Rusevova K., Köferstein R., Rosell M., Richnow H. H., Kopinke F. D., Georgi A. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chemical Engineering Journal. 2014;239: 322–331. https://doi.org/10.1016/j.cej.2013.11.025
Kondrashkova I. S., Martinson K. D., Zakharova N. V., Popkov V. I. Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion. Russian Journal of General Chemistry. 2018;88(12): 2465–2471. https://doi.org/10.1134/S1070363218120022
Wen W., Wu J. M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Advances. 2014;4(101): 58090–58100. https://doi.org/10.1039/c4ra10145f
Popkov V. I., Martinson K. D., Kondrashkova I. S., Enikeeva M. O., Nevedomskiy V. N., Panchuk V. V., Semenov V. G., Volkov M. P., Pleshakov I. V. SCS-assisted production of EuFeO3 core-shell nanoparticles: formation process, structural features and magnetic behavior. Journal of Alloys and Compounds. 2021;859: 157812. https://doi.org/10.1016/j.jallcom.2020.157812
Tikhanova S. M., Lebedev L. A., Martinson K. D., Chebanenko M. I., Buryanenko I. V., Semenov V. G., Nevedomskiy V. N., Popkov V. I. Synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New Journal of Chemistry. 2021;45(3): 1541–1550. https://doi.org/10.1039/D0NJ04895J
Mir F. A., Sharma S. K., Kumar R. Magnetizations and magneto-transport properties of Ni-doped PrFeO3 thin films. Chinese Physics B. 2014;23(4): 048101. https://doi.org/10.1088/1674-1056/23/4/048101
Rehman F., Sayed M., Khan J. A., Shah L. A., Shah N. S., Khan H. M., Khattak R. Degradation of crystal violet dye by fenton and photo-fenton oxidation processes. Zeitschrift Fur Physikalische Chemie. 2018;232(12): 1771–1786. https://doi.org/10.1515/zpch-2017-1099
. Luo W, Zhu L., Wang N., Tang H., Cao M., She Y. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental Science and Technology. 2010;44(5): 1786–1791. https://doi.org/10.1021/es903390g
Ju L., Chen Z., Fang L., Dong W., Zheng F., Shen M. Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles. Journal of the American Ceramic Society. 2011;94(10): 3418–3424. https://doi.org/10.1111/j.1551-2916.2011.04522.x
Shi S., Xu J., Li L. Preparation and photocatalytic activity of ZnO nanorods and ZnO/Cu2O nanocomposites. Main Group Chemistry. 2017;16(1): 47–55. https://doi.org/10.3233/MGC-160224
Kim J. Y., Kang S. H., Kim H. S., Sung Y. E. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells. Langmuir. 2010;26(4): 2864–2870. https://doi.org/10.1021/la902931w
Cam T. S., Vishnevskaya T. A., Omarov S. O., Nevedomskiy V. N., Popkov V. I.,Urea–nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: the effect of Red/Ox ratio. Journal of Materials Science. 2020;55(26): 11891–11906. https://doi.org/10.1007/s10853-020-04857-3
Faisal M., Harraz F. A., Ismail A. A., El-Toni A. M., Al-Sayari S. A., Al-Hajry A., Al-Assiri M. S. Novel mesoporous NiO/TiO2 nanocomposites with enhanced photocatalytic activity under visible light illumination. Ceramics International. 2018;44(6): 7047–7056. https://doi.org/10.1016/j.cera-mint.2018.01.140
Mu J., Chen B., Zhang M., Guo Z., Zhang P., Zhang Z., Sun Y., Shao C., Liu Y. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Applied Materials & Interfaces. 2012;4(1): 424–430. https://doi.org/10.1021/am201499r
Yu H., Yu J., Cheng B. Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air. Chemosphere. 2007;66(11): 2050–2057. https://doi.org/10.1016/j.chemosphere.2006.09.080
Boulbar E. Le, Millon E., Cachoncinlle C., Hakim B., Ntsoenzok E. Optical properties of rareearth-doped TiO2 anatase and rutile thin films grown by pulsed-laser deposition. Thin Solid Films. 2013;553:13–16. https://doi.org/10.1016/j.tsf.2013.11.032
Ismail A. A., Bahnemann D. W. Mesoporous titania photocatalysts: Preparation, characterization and reaction mechanisms. Journal of Materials Chemistry. 2011;21(32): 11686–11707. https://doi.org/10.1039/c1jm10407a
Yadav H. M., Kolekar T. V., Barge A. S., Thorat N. D., Delekar S. D., Kim B. M., Kim B. J., Kim J. S. Enhanced visible-light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol-gel method. Journal of Materials Science: Materials in Electronics. 2015;27(1): 526-534.
https://doi.org/10.1007/s10854-015-3785-6
Rozenberg G. K., Pasternak M. P., Xu W. M., Dubrovinsky L. S., Carlson S., Taylor R. D. Consequences of pressure-instigated spin crossover in RFeO3 perovskites; a volume collapse with no symmetry modification. Europhysics Letters. 2005;71(2): 228–234. https://doi.org/10.1209/epl/i2005-10071-9
Kotlovanova N. E., Matveeva A. N., Omarov S. O., Sokolov V. V., Akbaeva D. N., Popkov V. I. Formation and acid-base surface properties of highly dispersed h-Al2O3 nanopowders. Inorganic Materials. 2018;54(4): 392–400. https://doi.org/10.1134/S0020168518040052
Khaliullin S. M., Zhuravlev V. D., Ermakova L. V., Buldakova L. Y., Yanchenko M. Y., Porotnikova N. M. Solution combustion synthesis of ZnO using binary fuel (glycine + citric acid). International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4): 226–232. https://doi.org/10.3103/S1061386219040058
Ismail A. A., Robben L., Bahnemann D. W. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. ChemPhysChem. 2011;12(5): 982–991. https://doi.org/10.1002/cphc.201000936
Peymani-Motlagh S. M., Sobhani-Nasab A., Rostami M., Sobati H., Eghbali-Arani M., Fasihi-Ramandi M., Ganjali M. R., Rahimi-Nasrabadi M. Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt-nickel ferrite. Journal of Materials Science: Materials in Electronics. 2019;30(7): 6902–6909. https://doi.org/10.1007/s10854-019-01005-9
Abdellahi M., Abhari A. S., Bahmanpour M. Preparation and characterization of orthoferrite PrFeO3 nanoceramic. Ceramics International. 2016;42(4): 4637–4641. https://doi.org/10.1016/j.ceramint.2015.12.027
Goldstein S., Meyerstein D. Comments: on the mechanism of the Fenton-like reaction. Accounts of Chemical Research. 1999;32(7): 547–550. https://doi.org/10.1021/ar9800789
Ćirković J., Radojković A., Luković Golić D., Tasić N., Čizmić M., Branković G., Branković Z. Visible- light photocatalytic degradation of Mordant Blue 9 by single-phase BiFeO3 nanoparticles. Journal of Environmental Chemical Engineering. 2021;9(1): 104587. https://doi.org/10.1016/j.jece.2020.104587
Copyright (c) 2021 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.