Specifying the structural formula of kaolinite from the Orenburg Region by means of spectroscopic methods
Abstract
Kaolinite certification is necessary when using it as a raw material in the ceramic industry. The kaolin clay deposit discovered in the Orenburg Region in 2018 is presumably the largest in the country. Within the Koskolskaya area, 5 mineral deposits have been described. Three of them are particularly promising deposits of high-quality kaolin clay. Previously, studies of the technological and physical characteristics of clay from this deposit were carried out. The purpose of our study was to derive and specify the structural formula of kaolinite contained in the clays.
After elutriation and grinding in a ball mill, natural clay was sifted through a sieve with meshes of 40 μm. The conducted IR, Raman, and EPR spectroscopy, as well as DTA allowed us to monitor the process of metakaolinisation, which occurs as a result of dehydration of kaolinite (i.e. the process of transformation of kaolinite into metakaolinite). Spectroscopic methods made it possible to analyse the parameters of the fine structure, in particular, the degree of crystallinity of kaolinite particles and the occurrence of iron and magnesium ions in hydroxyl sheets.
Conducting a series of experiments, we managed to specify the structural formula of the kaolinite of the Koskolsky deposit of the Orenburg region: K,Na,Ca,Ba Al Fe ,Fe Mg Mn,Cr 0.16 3.62 3+ 2+
0.11 0.27 0.01 Si Ti O OH 3.86 0.14 10 8.
The square brackets indicate the cationic compositions of the hydroxyl and siloxane sheets that formed the surface charge of the mineral particles. Compensator ions remain outside the square brackets. Thus, in our study we assessed the substance used as a raw material in the ceramic industry and determined the role of elutriation and mechanical treatment of kaolin clay.
Downloads
References
Grevtsev V. A., Lygina T. Z. Morphological and structural features of natural, activated and synthesized substances*. Bulletin of the Kazan Technological University. 2010;(8): 236-249. (in Russ.). Available at: https://www.elibrary.ru/item.asp?id=15240366
Klepikov M. S. Study of the physicochemical properties of kaolins from the Poletaevsky deposit of the helyabinsk region and ceramic materials based on them*. Cand. chem. sci. diss. Abstr. Chelyabinsk: 2012. 23 p. (in Russ.). Available at: https://www.dissercat.com/content/issledovanie-fiziko-khimicheskikhsvoistv-
kaolinov-poletaevskogo-mestorozhdeniyachelyabinsk
Vereshchagin V. I., Shatalov P. I., Mogilevskaya N. V. Speckless technology of diopside ceramic dielectrics based on iron-free diopside raw materials from the Slyudyanskoye deposit*. Refractories and Industrial Ceramics. 2006;(8): 33-35. (in Russ.). Available at: https://w w w.elibrar y.ru/item.asp?id=16501015
Worasith N., Goodman B. A., Neampan J., Jeyachoke N., Thiravetyan P. Characterization of modified kaolin from the Ranong deposit Thailand by XRD, XRF, SEM, FTIR and EPR techniques. Clay Minerals. 2011;46(4): 539–559. https://doi.org/10.1180/claymin.2011.046.4.539
García-Tojal J., Iriarte E., Palmero S., ... Muñiz P. Phyllosilicate-content influence on the spectroscopic properties and antioxidant capacity of Iberian Cretaceous clays. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021;(251): 119472. https://doi.org/10.1016/j.saa.2021.119472
Chen J., Min Fan-fei, Liu Ling-yun, Jia Fei-fei. Adsorption of methylamine cations on kaolinite basal surfaces: A DFT study. Physicochemical Problems of Mineral Processing. 2020;56(2): 338–349. https://doi.org/10.37190/ppmp/117769
Worasith N., Ninlaphurk S. Mungpayaban H., Wen D., Goodman B. Characterization of paramagnetic centres in clay minerals and free radical surface reactions by EPR spectroscopy. 2014. Available at: https://www.researchgate.net/publication/292536710
Chetverikova A. G., Kanygina O. N., Filyak M. M. Structural transformations in oxides constituting natural clays under the influence of a microwave field*. Orenburg: OGU Publ.; 2021. 204 p. (in Russ.)
Nasirov R. N., Samatov I. B., Slyussarev A. P., Nasirov A. R. Complex mineralogical and lithological study of sedimentary oil and gas bearing rocks of the precaspian region by EPR, IR-spectroscopy, X-ray diffractometry and thermal analysis*. News of the national academy of sciences of the republic of Kazakhstan series of geology and technical sciences. 2018;(4): 174–185. (In Russ.). Available at: http://geologtechnical.kz/images/pdf/g20184/174-185.pdf
Rutherford D. W., Chiou C. T., Eberl D. D. Effects of exchanged cation on the microporosity of montmorillonite. Clays and Clay Minerals. 1997;45(4): 534–543. https://doi.org/10.1346/ccmn.1997.0450405
Balan E., Allard T., Boizot B., Morin G., Muller J. P. Quantitative measurement of paramagnetic Fe3+ in kaolinite. Clays and Clay Minerals. 2000;48(4): 439–445. https://doi.org/10.1346/ccmn.2000.0480404
Gaite J. M., Ermakoff P., Allard T., Müller J. P. Paramagnetic Fe3+: a sensitive probe for disorder in kaolinite. Clays and Clay Minerals. 1997;45(4): 496–505. https://doi.org/10.1346/CCMN.1997.0450402
Dobosz B., Krzyminiewski R. Characteristic of paramagnetic centres in burnt clay and pottery by the EPR method. Radiation measurements. 2007;42(2): 213–219. https://doi.org/10.1016/j.radmeas.2006.11.003
Goodman B. A., Worasith N., Deng W. EPR spectra of a new radiation-induced paramagnetic centre in kaolins. Clay Minerals. 2016;51(5): 707–714. https://doi.org/10.1180/claymin.2016.051.5.01
Chibilev A. A., Petrishchev V. P., Klimentiev A. I., ... Rychko O. K. Geographical atlas of the Orenburg region*. Moscow: DIK Publ.; 1999. 96 p. (in Russ.)
Kadyrbakov I. Kh., Isinbaev A. V., Zubairov R. R. Structural features of eluvial kaolin deposits of the Kovylnoe deposit in the Orenburg region (according to exploration results)*. Practice of geologists in production. Proceedings of the VI All-Russian Student Scientific and Practical Conference dedicated to the Year of Science and Technology. Rostov-on-Don – Taganrog, 2021. Rostov-on-Don: Southern Federal University Publ.; 2021. p. 36-38. (in Russ.)
Vasyanov G. P., Gorbachev B. F., Chechulina Yu. V., Shmelkov N. T. Deposit eluvial kaolin Kovylny in the east of the Orenburg region. National Geology (Otechestvennaya Geologiya). 2012;(4):11–19. (in Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=17789124
Kanygina O. N., Chetverikova A. G., Alpysbaeva G. Zh., … Gun’kov, V. V. Characteristics of kaolin clay from the deposit in the svetlinskii area of Orenburg oblast. Glass and Ceramics. 2021;77(9-10): 355–360. https://doi.org/10.1007/s10717-021-00306-y
Chetverikova A. G., Kanygina O. N., Alpysbaeva G. Z., Yudin A. A., Sokabayeva S. S. Infrared spectroscopy as the method for determining structural responses of natural clays to microwave exposure. Condensed Matter and Interphases. 2019;21(3): 446–454. https://doi.org/10.17308/kcmf.2019.21/1155
Osipov V. I., Sokolov V. N. Clays and their properties. Composition, structure and formation of properties*. Moscow: Geos Publ.; 2013. 578 p. (In Russ.)
GOST 21216-2014. Clay material. Test methods: approved and put into effect by the Interstate Council for Standardization, Metrology and Certification (minutes of May 25, 2014 No. 45-2014): introduction date 2015-07-01. (in Russ.) Available at: https://docs.cntd.ru/document/1200115068
Chetverikova A. G., Chetverikova D. K. Transduction of crystal chemistry methods into the physics of materials*. University complex as a regional center of education, science and culture. Collection of materials of the All-Russian Scientific and Methodological Conference, Orenburg, January 26–27, 2022. Orenburg: Orenburg State University Publ.; 2022. p. 2939–2942. (In Russ.)
ISO 21822:2019(en). Fine ceramics (advanced ceramics, advanced technical ceramics). Measurement of iso-electric point of ceramic powder*. This document was prepared by Technical Committee ISO/TC 206, Fine ceramics. Available at: https://www.iso.org/obp/ui
Chetverikova A. G. Determination of particle size distribution and electrokinetic potential of phyllosilicate powders by photon correlation spectroscopy. Measurement Techniques. 2022;64(11): 936–941. https://doi.org/10.1007/s11018-022-02024-5
ISO 24235:2007(en). Fine ceramics (advanced ceramics, advanced technical ceramics). Determination of particle size distribution of ceramic powders by laser diffraction method. ISO 24235 was prepared by Technical Committee ISO/TC 206, Fine ceramics. Available at: htps://www.iso.org/obp/ui
GOST 9169-2021. Clay raw materials for the ceramic industry. Classification: adopted by the Interstate Scientific and Technical Commission for Standardization, Technical Regulation and Conformity Assessment in Construction (MNTKS) (Minutes of June 30, 2021 № 141-P): introduction date 2022-04-01. (In Russ.) Available at: https://allgosts.ru/81/060/gost_9169-2021
Becker Yu. Spectroscopy. Moscow: Technosphere Publ.; 2009. 528 p. (in Russ.)
Hall P. L. The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties. Clay Minerals. 1980;15(4): 321–335. https://doi.org/10.1180/claymin.1980.015.4.01
Bortnikov N. S., Mineeva R. M., Savko A. D., … Speransky A. V. Kaolinite history in the weathering crust and associated clay deposits: EPR data. Doklady Earth Sciences. 2010;433: 927–930. https://doi.org/10.1134/S1028334X10070184
Babinska J., Dyrek K., Wyszomirski P. EPR study of paramagnetic defects in clay minerals. Mineralogia. 2007;38(2): 125. https://doi.org/10.2478/v10002-007-0021-x
Liu Y., Huang Q., Zhao L., Lei S. Influence of kaolinite crystallinity and calcination conditions on the pozzolanic activity of metakaolin. Gospodarka Surowcami Mineralnymi-Mineral Resources Management. 2021: 39–56. https://doi.org/10.24425/gsm.2021.136295
Escalera E., Antti M.L., Odén M. Thermal treatment and phase formation in kaolinite and illite based clays from tropical regions of Bolivia. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2012; 31(1): https://doi.org/10.1088/1757-899X/31/1/012017
Stoch L. Significance of structural factors in dehydroxylation of kaolinite polytypes. Journal of Thermal Analysis and Calorimetry. 1984;29(5): 919–931. https://doi.org/10.1007/bf02188838
Guryeva V.A. Physico-chemical studies of the use of dunites in decorative and finishing ceramics. Orenburg: IPK GOU OGU: 2007. 129 p. (in Russ.)
Rakhimov R.Z., Rakhimova N.R., Gaifullin A.R., Morozov V.P. Dehydration of clays of different mineral composition during calcination. Izvestiya KGASU. 2016;4(38): 388–394. (in Russ.)
Janotka I. , Puertas F. , Palacios M. , Kuliffayová M., Varga C. Metakaolin sand-blendedcement pastes: Rheology, hydration process and mechanical properties. Construction and Building Materials. 2010;24(5): 791–802. https://doi.org/10.1016/j.conbuildmat.2009.10.028
Tironi A., Trezza M.A., Irassar E.F., Scian A.N. Thermal treatment of kaolin: effect on the pozzolanic activity. Procedia Materials Science. 2012;(1): 343–350. https://doi.org/10.1016/j.mspro.2012.06.046
Khang V.C., Korovkin M.V., Ananyeva L.G. Identification of clay minerals in reservoir rocks by FTIR spectroscopy. IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2016;43(1): 012004.
Rosa M.S.L., Silva R.A.O., Sousa P.E., do Nascimento R.T., Knoerzer T., Santos M.R.M.C. Doxazosin adsorption in natural, expanded, and organophilized vermiculite-rich clays. Cerâmica. 2022;68(385): 75–83. https://doi.org/10.1590/0366-69132022683853175
Fricke H.H., Mattenklott M., Parlar H., Hartwig A. Method for the determination of quartz and cristobalite [Air Monitoring Methods, 2015]. The MAK – Collection for Occupational Health and Safety: Annual Thresholds and Classifications for the Workplace. 2002;1(1): 401–436. https://doi.org/10.1002/3527600418.am0sio2fste2015
Tosoni S., Doll K., Ugliengo P. Hydrogen bond in layered materials: structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chemistry of Materials. 2006;18(8): 2135–2143.
Jovanovski G., Makreski P. Minerals from macedonia. XXX. Complementary use of vibrational spectroscopy and x-ray powder diffraction for spectrastructural study of some cyclo-, phyllo- and tectosilicate minerals. A review. Macedonian Journal of Chemistry and Chemical Engineering. 2016;35(2): 125–155. https://doi.org/10.20450/mjcce.2016.1047
Saikia B.J., Parthasarathy G., Borah, R.R., Borthakur R. Raman and FTIR spectroscopic evaluation of clay minerals and estimation of metal contaminations in natural deposition of surface sediments from Brahmaputra river. International Journal of Geosciences, 2016;7(7): 873–883.
Samyn, P., Schoukens, G., Stanssens, D. Kaolinite nanocomposite platelets synthesized by intercalation and imidization of poly (styrene-comaleic anhydride). Materials. 2015;8(7): 4363–4388. https://doi.org/10.3390/ma8074363
Johnston C.T., Helsen J., Schoonheydt R.A., Bish D.L. , Agnew S.F. Single-crystal Raman spectroscopy study of dickite. American Mineralogist. 1998;83(1-2): 75–84. https://doi.org/10.2138/am-1998-1-208
Basu A., Mookherjee M. Intercalation of Water in Kaolinite (Al2Si2O5(OH)4) at Subduction Zone Conditions: Insights from Raman Spectroscopy. ACS Earth and Space Chemistry. 2021;5(4): 834–848. https://doi.org/10.1021/acsearthspacechem.0c00349
Vasilevich R. S., Beznosikov V. A., Lodygin E. D. Molecular structure of humic substances in permafrost hilly peatlands of the forest-tundra. Soil science. 2019;(3): 317–329. (in Russ.) https://doi.org/10.1134/S0032180X19010167
Kurochkina G. N., Kezhentsev A. S., Sokolov O. A. Physico-chemical study of soils contaminated with rocket fuel components. Soil science. 1999;(3): 359–369. (in Russ.)
Calas G. Electron paramagnetic resonance. In Spectroscopic Methods in Mineralogy and Geology (F.C. Hawthorne, Eds.). Reviews in Mineralogy. 1988;(1): 513-571.
Savko A. D., Krainov A. V., Ovchinnikova M. Yu., Milash A. V., Novikov V. M. Ages of formation of weathering crusts and connection with them of deposits of secondary kaolins and ceramic clays in the Phanerozoic of the Voronezh anteclise. Bulletin of the Voronezh State University. Series: Geology. 2019;(3):23–34. (in Russ.)
Grevtsev V.A., Lygina T.Z. Aspects of application of the method of electron paramagnetic resonance in the study of non-metallic raw materials. Exploration and protection of mineral resources. 2010;(8): 34–39. (in Russ.)
Slay D., Cao D., Ferré E.C., Charilaou M. Ferromagnetic resonance of superparamagnetic nanoparticles: The effect of dipole–dipole interactions. Journal of Applied Physics. 2021;130(11): 113902. https://doi.org/10.1063/5.0060769
Bertolino L.C., Rossi A.M., Scorzelli R.B., Torem M.L. Influence of iron on kaolin whiteness: An electron paramagnetic resonance study. Applied Clay Science. 2010;49(3): 170–175. https://doi.org/10.1016/j.clay.2010.04.022
Lyutoev V.P., Burtsev I.N., Saldin V.A., Golovataya O.S. EPR and IR spectroscopy of oil shale: material composition and forms of localization of heavy metals (Chim-Loptyugskoye deposit, Komi Republic). Mineralogy of technogenesis. 2012;(13): 115–132. (in Russ.)
Gaite J. M. , Ermakoff P. , Muller J. P. Characterization and origin of two Fe3+ EPR spectra in kaolinite. Physics and Chemistry of Minerals. 1993;20(4): 242–247.
Djemai A., Balan E., Morin G., Hernandez G., Labbe J.C., Muller J.P. Behavior of paramagnetic iron during the thermal transformations of kaolinite. Journal of the American Ceramic Society. 2001;84(5): 1017–1024. https://doi.org/10.1111/j.1151-2916.2001.tb00784.x
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.