Structure and composition of a composite of porous silicon with deposited copper
Abstract
Porous silicon is a promising nanomaterial for optoelectronics and sensorics, as it has a large specific surface area and is photoluminescent under visible light. The deposition of copper particles on the surface of porous silicon will greatly expand the range of applications of the resulting nanocomposites. Copper was chosen due to its low electrical resistivity and high resistance to electromigration compared to other metals. The purpose of this research was to study changes in the structure and composition of porous silicon after the chemical deposition of copper.
Porous silicon was obtained by the anodisation of monocrystalline silicon wafers KEF (100) (electronic-grade phosphorus-doped silicon) with an electrical resistivity of 0.2 Ohm·cm. An HF solution in isopropyl alcohol with the addition of H2O2 solution was used to etch the silicon wafers. The porosity of the samples was about 70 %. The porous silicon samples were immersed in copper sulphate solution (CuSO4·5H2O) for 7 days. We used scanning electron microscopy, IR spectroscopy, and ultrasoft X-ray emission spectroscopy to obtain data on the morphology and composition of the initial sample and the sample with deposited copper. The chemical deposition of copper on porous silicon showed a significant distortion of the pore shape as well as the formation of large cavities inside the porous layer. However, in the lower part the pore morphology remained the same as in the original sample. It was found that the chemical deposition of copper on porous silicon leads to copper penetrating into the porous layer, the formation of a composite structure, and it prevents the oxidation of the porous layer during storage. Thus, it was demonstrated that the chemical deposition of copper on a porous silicon surface leads to visible changes in the surface morphology and composition. Therefore, it should have a significant impact on the catalytic, electrical, and optical properties of the material.
Downloads
References
Willander M., Nur O., Lozovik Yu E., … Klason P. Solid and soft nanostructured materials: Fundamentals and applications. Microelectronics Journal. 2005;36(11): 940–949. https://doi.org/10.1016/j.mejo.2005.04.020
Ilyas N., Wang J., Li C., … Li W. Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Advanced Functional Materials. 2022;3(2110976): 1–29. https://doi.org/10.1002/adfm.202110976
Ammar A. H., Farag A. A. M., Gouda M. A., Roushdy N. Performance of novel nanostructured thin films of 2-cyano-N-(9,10-dioxo-9,10-dihydro-anthracene-2-yl)-2-(2-phenylhydrazono)acetamide: Synthesis and optoelectronic characteristics. Optik. 2021;226(2): 165967–166009. https://doi.org/10.1016/j.ijleo.2020.165967
Sicchieri N. B., Chiquito A. J., Gouveia R. C. Electronic and optoelectronic properties of intrinsic and cooper-doped germanium nanowire network devices. Materials Today: Proceedings. 2022;51(5):1872–1877. https://doi.org/10.1016/j.matpr.2021.10.081
Zhang S., Wei S., Liu Z., … Zhang H. The rise of AI optoelectronic sensors: From nanomaterial synthesis, device design to practical application. Materials Today Physics. 2022;27 (100812): 1–26. https://doi.org/10.1016/j.mtphys.2022.100812
Zhao J.-H., Li X.-B., Chen Q.-D., Chen Z.-G., Sun H.-B. Ultrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices. Materials Today Nano. 2020;11: 100078–100098. https://doi.org/10.1016/j.mtnano.2020.100078
Ni Z., Zhou Sh., Zhao Sh., Peng W., Yang D., Pi X. Silicon nanocrystals: unfading silicon materials for optoelectronics. Materials Science and Engineering R. 2019;138: 85–117. https://doi.org/10.1016/j.mser.2019.06.001
Xu C., Ravi Anusuyadevi P., Aymonier C., Luque R., Marre S. Nanostructured materials for photocatalysis. Chemical Society Reviews. 2019;48: 3868–3902. https://doi.org/10.1039/C9CS00102F
Jesionowski T., Kuznowicz M., Jędrzak A., Rębiś T. Sensing materials: biopolymeric nanostructures. Encyclopedia of Sensors and Biosensors. 2023;2: 286–304. https://doi.org/10.1016/B978-0-12-822548-6.00015-7
Kumar V., Minocha N., Garg V., Dureja H. Nanostructured materials used in drug delivery. Materials Today: Proceedings. 2022;69(2): 174–180. https://doi.org/10.1016/j.matpr.2022.08.306
Truong V. K., Kobaisi M. A., Vasilev K., Cozzolino D., Chapman J. Current perspectives for engineering antimicrobial nanostructured materials. Current Opinion in Biomedical Engineering. 2022;23: 100399. https://doi.org/10.1016/j.cobme.2022.100399
Khinevich N., Bandarenka H., Zavatski S., Girel K., Tamulevičienė A., Tamulevičius T., Tamulevičius S. Porous silicon - a versatile platform for mass-production of ultrasensitive SERS-active substrates. Microporous and Mesoporous Materials. 2021;323: 111204. https://doi.org/10.1016/j.micromeso.2021.111204
Alhmoud H., Brodoceanu D., Elnathan R., Kraus T., Voelcker N. H. Reprint of: A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science. 2021;120: 100817, https://doi.org/10.1016/j.pmatsci.2021.100817
Alhmoud H., Brodoceanu D., Elnathan R., Kraus T., Voelcker N. H. A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science. 2021;116: 100636. https://doi.org/10.1016/j.pmatsci.2019.100636
Pan M., Yang J., Liu K., … Wang S. Noble metal nanostructured materials for chemical and biosensing systems. Nanomaterials. 2020;10(2): 209. https://doi.org/10.3390/nano10020209
Saini A., Abdelhameed M., Rani D., … Dutta M. Fabrication of periodic, flexible and porous silicon microwire arrays with controlled diameter and spacing: Effects on optical properties. Optical Materials. 2022;134 (A): 113181. https://doi.org/10.1016/j.optmat.2022.113181
Sun X., Sharma P., Parish G., Keating A. Enabling high-porosity porous silicon as an electronic material. Microporous and Mesoporous Materials. 2021;312: 110808. https://doi.org/10.1016/j.micromeso.2020.110808
Aksimentyeva O. I., Tsizh B. R., Monastyrskii L. S., Olenych I. B., Pavlyk M. R. Luminescence in porous silicon – poly(para–phenylene) hybrid nanostructures. Physics Procedia. 2015;76: 31–36. https://doi.org/10.1016/j.phpro.2015.10.006
Goryachev D. N., Belyakov L. V., Yeltsina O. S., Vainshtein J., Sreseli O. M. On the metal-assisted chemical etching of nanoporous silicon. ECS Meeting Abstracts. 2012;MA2012-02(26): 2372–2372. https://doi.org/10.1149/MA2012-02/26/2372
Taurbayev Y. T., Gonchar K. A., Zoteev A. V., Timoshenko V., Zhanabayev Z. Zh., Nikulin V. E., Taurbayev T. I. Electrochemical nanostructuring of semiconductors by capillary-cell method. Key Engineering Materials. 2010;442: 1–6. https://doi.org/10.4028/www.scientific.net/KEM.442.1
Spivak Yu. M., Belorus A. O., Somov P. A., Tulenin S. S., Bespalova K. A., Moshnikov V. A. Porous silicon nanoparticles for target drag delivery: structure and morphology. Journal of Physics: Conference Series. 2015;643: 012022. https://doi.org/10.1088/1742-6596/643/1/012022
Belkacem W., Belhi R., Mliki N. Magneto-optical properties of cobalt nanoparticles in porous silicon. Journal of Magnetism and Magnetic Materials. 2022;563: 169882. https://doi.org/10.1016/j.jmmm.2022.169882
Grevtsov N., Chubenko E., Bondarenko V., Gavrilin I., Dronov A., Gavrilov S. Electrochemical deposition of indium into oxidized and unoxidized porous silicon. Thin Solid Films. 2021;734: 138860. https://doi.org/10.1016/j.tsf.2021.138860
Ensafi A. A., Abarghoui M. M., Rezaei B. Electrochemical determination of hydrogen peroxide usingcopper/porous silicon based non-enzymatic sensor. Sensors and Actuators B. 2014;196: 398–405. https://dx.doi.org/10.1016/j.snb.2014.02.028
Moshnikov V. A., Gracheva I., Lenshin A. S., Spivak Y. M., Anchkov M. G., Kuznetsov V. V., Olchowik J. M. Porous silicon with embedded metal oxides for gas sensing applications. Journal of Non-Crystalline Solids. 2012;358: 590–595. http://dx.doi.org/10.1016/j.jnoncrysol.2011.10.017
Save D., Braud F., Torres J., Binder F., Müller C., Weidner J. O., Hasse W. Electromigration resistance of copper interconnects. Microelectronic Engineering. 1997;33 (1-4): 75–84. https://doi.org/10.1016/S0167-9317(96)00033-0
Al-Jumaili B. E. B., Talib Z. A., Ramizy A., … Lee H. K. Formation and photoluminescence properties of porous silicon/copper oxide nanocomposites fabricated via electrochemical deposition technique for photodetector application. Digest Journal of Nanomaterials and Biostructures. 2021,16: 297–310. https://doi.org/10.15251/DJNB.2021.161.297
Huang Y. M. Photoluminescence of copper-doped porous silicon. Applied Physics Letters. 1996;69(19): 2855. https://doi.org/10.1063/1.117341
Ensafi A. A., Mokhtari Abarghoui M., Rezaei B. A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochimica Acta. 2014,123: 219–226. https://doi.org/10.1016/j.electacta.2014.01.031
Ensafi A. A., Abarghoui M. M., Rezaei B. Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sensors and Actuators B: Chemical. 2014,196: 398–405. https://doi.org/10.1016/j.snb.2014.02.028
Ozdemir S., Gole J. L. A phosphine detection matrix using nanostructure modified porous silicon gas sensors. Sensors and Actuators B: Chemical. 2010;151(1): 274-280. https://doi.org/10.1016/j.snb.2010.08.016
Darwich W., Garron A., Bockowski P., Santini C., Gaillard F., Haumesser P.-H. Impact of surface chemistry on copper deposition in mesoporous silicon. Langmuir. 2016;32(30): 7452–7458. https://doi.org/10.1021/acs.langmuir.6b00650
Kashkarov V. M., Len’shin A. S., Popov A. E., Agapov B. L., Turishchev S. Yu. Сomposition and structure of nanoporous silicon layers with galvanically deposited Fe and Co. Bulletin of the Russian Academy of Sciences: Physics. 2008;72(4): 453–458. https://doi.org/10.3103/s1062873808040084
Canham L. Handbook of porous silicon. Springer Cham; 2018., 1613 p. https://doi.org/10.1007/978-3-319-71381-6
Manukovsky E. Yu. Electronic structure, composition and photoluminescence of porous silicon*. Cand. phys.-math sci. diss. Voronezh, VSU; 1999. (In Russ.). Available at: https://www.dissercat.com/content/elektronnaya-struktura-sostav-i-fotolyuminestsentsiya-poristogo-kremniya
Kashkarov V., Nazarikov I., Lenshin A., Terekhov … Domashevskaya E. Electron structure of porous silicon obtained without the use of HF acid. Physica Status Solidi (C) Current Topics in Solid State Physics. 2009;6 (7): 1557–1560. https://doi.org/10.1002/pssc.200881019
Len’shin A. S., Kashkarov V. M., Domashevskaya E. P., Seredin P. V., Bel’tyukov A. N., Gil’mutdinov F. Z. Composition of nanocomposites of thin tin layers on porous silicon, formed by magnetron sputtering. Physics of the Solid State. 2017;59(4): 791–800. https://doi.org/10.1134/S1063783417040138
Terekhov V. A., Kashkarov V. M., Manukovskii E. Yu., Schukarev A. V., Domashevskaya E. P. Determination of the phase composition of surface layers ofporous silicon by ultrasoft X-ray spectroscopy and X-ray photoelectronspectroscopy techniques. Journal of Electron Spectroscopy and Related Phenomena. 2001; 114–116: 895–900. https://doi.org/10.1016/S0368-2048(00)00393-5
Len’shin A. S., Kashkarov V. M., Tsipenyuk V. N., Seredin P. V., Agapov B. L., Minakov D. A., Domashevskaya E. P. Optical properties of porous silicon processed in tetraethyl orthosilicate. Technical Physics. 2013;58(2): 284–288. https://doi.org/10.1134/S1063784213020151
Lenshin A. S., Seredin P. V., Kashkarov V. M., Minakov D. A. Origins of photoluminescence degradation in porous silicon under irradiation and the way of its elimination. Materials Science in Semiconductor Processing. 2017;64: 71–76. https://doi.org/10.1016/j.mssp.2017.03.020
Turishchev S. Yu., Lenshin A. S., Domashevskaya E. P., Kashkarov V. M., Terekhov V. A., Pankov K. N., Khoviv D. A. Evolution of nanoporous silicon phase composition and electron energy structure under natural ageing. Physica Status Solidi C. 2009;6(7): 1651–1655. https://doi.org/10.1002/pssc.200881015
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.