Structure and composition of a composite of porous silicon with deposited copper

  • Alexander S. Lenshin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Voronezh State University of Engineering Technologies, Revolution Avenue, 19, Voronezh 394036, Russian Federation https://orcid.org/0000-0002-1939-253X
  • Kseniya B. Kim Voronezh State University of Engineering Technologies, Revolution Avenue, 19, Voronezh 394036, Russian Federation https://orcid.org/0000-0001-5564-8267
  • Boris L. Agapov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Vladimir M. Kashkarov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-9460-9244
  • Anatoly N. Lukin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-6521-8009
  • Sabukhi I. Niftaliyev Voronezh State University of Engineering Technologies, Revolution Avenue, 19, Voronezh 394036, Russian Federation https://orcid.org/0000-0001-7887-3061
Keywords: Porous silicon, Composites, Copper, Ultrasoft X-ray emission Spectroscopy, Electronic structure

Abstract

    Porous silicon is a promising nanomaterial for optoelectronics and sensorics, as it has a large specific surface area and is photoluminescent under visible light. The deposition of copper particles on the surface of porous silicon will greatly expand the range of applications of the resulting nanocomposites. Copper was chosen due to its low electrical resistivity and high resistance to electromigration compared to other metals. The purpose of this research was to study changes in the structure and composition of porous silicon after the chemical deposition of copper.
    Porous silicon was obtained by the anodisation of monocrystalline silicon wafers KEF (100) (electronic-grade phosphorus-doped silicon) with an electrical resistivity of 0.2 Ohm·cm. An HF solution in isopropyl alcohol with the addition of H2O2 solution was used to etch the silicon wafers. The porosity of the samples was about 70 %. The porous silicon samples were immersed in copper sulphate solution (CuSO4·5H2O) for 7 days. We used scanning electron microscopy, IR spectroscopy, and ultrasoft X-ray emission spectroscopy to obtain data on the morphology and composition of the initial sample and the sample with deposited copper. The chemical deposition of copper on porous silicon showed a significant distortion of the pore shape as well as the formation of large cavities inside the porous layer. However, in the lower part the pore morphology remained the same as in the original sample. It was found that the chemical deposition of copper on porous silicon leads to copper penetrating into the porous layer, the formation of a composite structure, and it prevents the oxidation of the porous layer during storage. Thus, it was demonstrated that the chemical deposition of copper on a porous silicon surface leads to visible changes in the surface morphology and composition. Therefore, it should have a significant impact on the catalytic, electrical, and optical properties of the material.

Downloads

Download data is not yet available.

Author Biographies

Alexander S. Lenshin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Voronezh State University of Engineering Technologies, Revolution Avenue, 19, Voronezh 394036, Russian Federation

Dr. Sci. (Phys.–Math.), Leading Researcher, Department of Solid State Physics and Nanostructures, Voronezh State University (Voronezh, Russian Federation)

Kseniya B. Kim, Voronezh State University of Engineering Technologies, Revolution Avenue, 19, Voronezh 394036, Russian Federation

Cand. Sci. (Chem.), Associate Professor, Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies (Voronezh, Russian Federation)

Boris L. Agapov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Tech.), Centre for Collective Use of Scientific Equipment, Voronezh State University (Voronezh, Russian Federation)

Vladimir M. Kashkarov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Associate Professor, Department of Solid State Physics and Nanostructures, Voronezh State University (Voronezh, Russian Federation)

Anatoly N. Lukin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Associate Professor, Department of Solid State Physics and Nanostructures, Voronezh State University (Voronezh, Russian Federation)

Sabukhi I. Niftaliyev, Voronezh State University of Engineering Technologies, Revolution Avenue, 19, Voronezh 394036, Russian Federation

Dr. Sci. (Chem.), Professor, Head of the Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies (Voronezh, Russian Federation)

References

Willander M., Nur O., Lozovik Yu E., … Klason P. Solid and soft nanostructured materials: Fundamentals and applications. Microelectronics Journal. 2005;36(11): 940–949. https://doi.org/10.1016/j.mejo.2005.04.020

Ilyas N., Wang J., Li C., … Li W. Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Advanced Functional Materials. 2022;3(2110976): 1–29. https://doi.org/10.1002/adfm.202110976

Ammar A. H., Farag A. A. M., Gouda M. A., Roushdy N. Performance of novel nanostructured thin films of 2-cyano-N-(9,10-dioxo-9,10-dihydro-anthracene-2-yl)-2-(2-phenylhydrazono)acetamide: Synthesis and optoelectronic characteristics. Optik. 2021;226(2): 165967–166009. https://doi.org/10.1016/j.ijleo.2020.165967

Sicchieri N. B., Chiquito A. J., Gouveia R. C. Electronic and optoelectronic properties of intrinsic and cooper-doped germanium nanowire network devices. Materials Today: Proceedings. 2022;51(5):1872–1877. https://doi.org/10.1016/j.matpr.2021.10.081

Zhang S., Wei S., Liu Z., … Zhang H. The rise of AI optoelectronic sensors: From nanomaterial synthesis, device design to practical application. Materials Today Physics. 2022;27 (100812): 1–26. https://doi.org/10.1016/j.mtphys.2022.100812

Zhao J.-H., Li X.-B., Chen Q.-D., Chen Z.-G., Sun H.-B. Ultrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices. Materials Today Nano. 2020;11: 100078–100098. https://doi.org/10.1016/j.mtnano.2020.100078

Ni Z., Zhou Sh., Zhao Sh., Peng W., Yang D., Pi X. Silicon nanocrystals: unfading silicon materials for optoelectronics. Materials Science and Engineering R. 2019;138: 85–117. https://doi.org/10.1016/j.mser.2019.06.001

Xu C., Ravi Anusuyadevi P., Aymonier C., Luque R., Marre S. Nanostructured materials for photocatalysis. Chemical Society Reviews. 2019;48: 3868–3902. https://doi.org/10.1039/C9CS00102F

Jesionowski T., Kuznowicz M., Jędrzak A., Rębiś T. Sensing materials: biopolymeric nanostructures. Encyclopedia of Sensors and Biosensors. 2023;2: 286–304. https://doi.org/10.1016/B978-0-12-822548-6.00015-7

Kumar V., Minocha N., Garg V., Dureja H. Nanostructured materials used in drug delivery. Materials Today: Proceedings. 2022;69(2): 174–180. https://doi.org/10.1016/j.matpr.2022.08.306

Truong V. K., Kobaisi M. A., Vasilev K., Cozzolino D., Chapman J. Current perspectives for engineering antimicrobial nanostructured materials. Current Opinion in Biomedical Engineering. 2022;23: 100399. https://doi.org/10.1016/j.cobme.2022.100399

Khinevich N., Bandarenka H., Zavatski S., Girel K., Tamulevičienė A., Tamulevičius T., Tamulevičius S. Porous silicon - a versatile platform for mass-production of ultrasensitive SERS-active substrates. Microporous and Mesoporous Materials. 2021;323: 111204. https://doi.org/10.1016/j.micromeso.2021.111204

Alhmoud H., Brodoceanu D., Elnathan R., Kraus T., Voelcker N. H. Reprint of: A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science. 2021;120: 100817, https://doi.org/10.1016/j.pmatsci.2021.100817

Alhmoud H., Brodoceanu D., Elnathan R., Kraus T., Voelcker N. H. A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science. 2021;116: 100636. https://doi.org/10.1016/j.pmatsci.2019.100636

Pan M., Yang J., Liu K., … Wang S. Noble metal nanostructured materials for chemical and biosensing systems. Nanomaterials. 2020;10(2): 209. https://doi.org/10.3390/nano10020209

Saini A., Abdelhameed M., Rani D., … Dutta M. Fabrication of periodic, flexible and porous silicon microwire arrays with controlled diameter and spacing: Effects on optical properties. Optical Materials. 2022;134 (A): 113181. https://doi.org/10.1016/j.optmat.2022.113181

Sun X., Sharma P., Parish G., Keating A. Enabling high-porosity porous silicon as an electronic material. Microporous and Mesoporous Materials. 2021;312: 110808. https://doi.org/10.1016/j.micromeso.2020.110808

Aksimentyeva O. I., Tsizh B. R., Monastyrskii L. S., Olenych I. B., Pavlyk M. R. Luminescence in porous silicon – poly(para–phenylene) hybrid nanostructures. Physics Procedia. 2015;76: 31–36. https://doi.org/10.1016/j.phpro.2015.10.006

Goryachev D. N., Belyakov L. V., Yeltsina O. S., Vainshtein J., Sreseli O. M. On the metal-assisted chemical etching of nanoporous silicon. ECS Meeting Abstracts. 2012;MA2012-02(26): 2372–2372. https://doi.org/10.1149/MA2012-02/26/2372

Taurbayev Y. T., Gonchar K. A., Zoteev A. V., Timoshenko V., Zhanabayev Z. Zh., Nikulin V. E., Taurbayev T. I. Electrochemical nanostructuring of semiconductors by capillary-cell method. Key Engineering Materials. 2010;442: 1–6. https://doi.org/10.4028/www.scientific.net/KEM.442.1

Spivak Yu. M., Belorus A. O., Somov P. A., Tulenin S. S., Bespalova K. A., Moshnikov V. A. Porous silicon nanoparticles for target drag delivery: structure and morphology. Journal of Physics: Conference Series. 2015;643: 012022. https://doi.org/10.1088/1742-6596/643/1/012022

Belkacem W., Belhi R., Mliki N. Magneto-optical properties of cobalt nanoparticles in porous silicon. Journal of Magnetism and Magnetic Materials. 2022;563: 169882. https://doi.org/10.1016/j.jmmm.2022.169882

Grevtsov N., Chubenko E., Bondarenko V., Gavrilin I., Dronov A., Gavrilov S. Electrochemical deposition of indium into oxidized and unoxidized porous silicon. Thin Solid Films. 2021;734: 138860. https://doi.org/10.1016/j.tsf.2021.138860

Ensafi A. A., Abarghoui M. M., Rezaei B. Electrochemical determination of hydrogen peroxide usingcopper/porous silicon based non-enzymatic sensor. Sensors and Actuators B. 2014;196: 398–405. https://dx.doi.org/10.1016/j.snb.2014.02.028

Moshnikov V. A., Gracheva I., Lenshin A. S., Spivak Y. M., Anchkov M. G., Kuznetsov V. V., Olchowik J. M. Porous silicon with embedded metal oxides for gas sensing applications. Journal of Non-Crystalline Solids. 2012;358: 590–595. http://dx.doi.org/10.1016/j.jnoncrysol.2011.10.017

Save D., Braud F., Torres J., Binder F., Müller C., Weidner J. O., Hasse W. Electromigration resistance of copper interconnects. Microelectronic Engineering. 1997;33 (1-4): 75–84. https://doi.org/10.1016/S0167-9317(96)00033-0

Al-Jumaili B. E. B., Talib Z. A., Ramizy A., … Lee H. K. Formation and photoluminescence properties of porous silicon/copper oxide nanocomposites fabricated via electrochemical deposition technique for photodetector application. Digest Journal of Nanomaterials and Biostructures. 2021,16: 297–310. https://doi.org/10.15251/DJNB.2021.161.297

Huang Y. M. Photoluminescence of copper-doped porous silicon. Applied Physics Letters. 1996;69(19): 2855. https://doi.org/10.1063/1.117341

Ensafi A. A., Mokhtari Abarghoui M., Rezaei B. A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochimica Acta. 2014,123: 219–226. https://doi.org/10.1016/j.electacta.2014.01.031

Ensafi A. A., Abarghoui M. M., Rezaei B. Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sensors and Actuators B: Chemical. 2014,196: 398–405. https://doi.org/10.1016/j.snb.2014.02.028

Ozdemir S., Gole J. L. A phosphine detection matrix using nanostructure modified porous silicon gas sensors. Sensors and Actuators B: Chemical. 2010;151(1): 274-280. https://doi.org/10.1016/j.snb.2010.08.016

Darwich W., Garron A., Bockowski P., Santini C., Gaillard F., Haumesser P.-H. Impact of surface chemistry on copper deposition in mesoporous silicon. Langmuir. 2016;32(30): 7452–7458. https://doi.org/10.1021/acs.langmuir.6b00650

Kashkarov V. M., Len’shin A. S., Popov A. E., Agapov B. L., Turishchev S. Yu. Сomposition and structure of nanoporous silicon layers with galvanically deposited Fe and Co. Bulletin of the Russian Academy of Sciences: Physics. 2008;72(4): 453–458. https://doi.org/10.3103/s1062873808040084

Canham L. Handbook of porous silicon. Springer Cham; 2018., 1613 p. https://doi.org/10.1007/978-3-319-71381-6

Manukovsky E. Yu. Electronic structure, composition and photoluminescence of porous silicon*. Cand. phys.-math sci. diss. Voronezh, VSU; 1999. (In Russ.). Available at: https://www.dissercat.com/content/elektronnaya-struktura-sostav-i-fotolyuminestsentsiya-poristogo-kremniya

Kashkarov V., Nazarikov I., Lenshin A., Terekhov … Domashevskaya E. Electron structure of porous silicon obtained without the use of HF acid. Physica Status Solidi (C) Current Topics in Solid State Physics. 2009;6 (7): 1557–1560. https://doi.org/10.1002/pssc.200881019

Len’shin A. S., Kashkarov V. M., Domashevskaya E. P., Seredin P. V., Bel’tyukov A. N., Gil’mutdinov F. Z. Composition of nanocomposites of thin tin layers on porous silicon, formed by magnetron sputtering. Physics of the Solid State. 2017;59(4): 791–800. https://doi.org/10.1134/S1063783417040138

Terekhov V. A., Kashkarov V. M., Manukovskii E. Yu., Schukarev A. V., Domashevskaya E. P. Determination of the phase composition of surface layers ofporous silicon by ultrasoft X-ray spectroscopy and X-ray photoelectronspectroscopy techniques. Journal of Electron Spectroscopy and Related Phenomena. 2001; 114–116: 895–900. https://doi.org/10.1016/S0368-2048(00)00393-5

Len’shin A. S., Kashkarov V. M., Tsipenyuk V. N., Seredin P. V., Agapov B. L., Minakov D. A., Domashevskaya E. P. Optical properties of porous silicon processed in tetraethyl orthosilicate. Technical Physics. 2013;58(2): 284–288. https://doi.org/10.1134/S1063784213020151

Lenshin A. S., Seredin P. V., Kashkarov V. M., Minakov D. A. Origins of photoluminescence degradation in porous silicon under irradiation and the way of its elimination. Materials Science in Semiconductor Processing. 2017;64: 71–76. https://doi.org/10.1016/j.mssp.2017.03.020

Turishchev S. Yu., Lenshin A. S., Domashevskaya E. P., Kashkarov V. M., Terekhov V. A., Pankov K. N., Khoviv D. A. Evolution of nanoporous silicon phase composition and electron energy structure under natural ageing. Physica Status Solidi C. 2009;6(7): 1651–1655. https://doi.org/10.1002/pssc.200881015

Published
2023-07-07
How to Cite
Lenshin, A. S., Kim, K. B., Agapov, B. L., Kashkarov, V. M., Lukin, A. N., & Niftaliyev, S. I. (2023). Structure and composition of a composite of porous silicon with deposited copper. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(3), 359-366. https://doi.org/10.17308/kcmf.2023.25/11259
Section
Original articles

Most read articles by the same author(s)