Engineering of biomimetic composite dental materials based on nanocrystalline hydroxyapatite and light-curing adhesive
Abstract
With the use of light-curing Bis-GMA (Bis-phenol-А glycidylmethacrylate) adhesive and nanocrystalline carbonatesubstituted calcium hydroxyapatite (nano-сHAp), corresponding by an aggregate set of characteristics to the apatite of human enamel and dentin obtained from the biogenic source of calcium – egg’s shell of birds biomimetic Bis-GMA/nano-сHAp adhesives were synthesized.
Introduction and distribution of nano-cHAp filler in the adhesive matrix as well as its interaction with molecular groups of the latter one resulted in the change of chemical bonds that was evidenced by the data of Fourier transform infrared (FTIR) spectroscopy. In summary, for the specified nanofiller concentration increased values of Vicker hardnesses (VH) and degree of conversion were attained simultaneously while light curing of Bis-GMA/nano-cHAp adhesive.
This result would provide a considerable influence on the following application of the developed biomimetic adhesives and clinical successes of teeth restoration with the use of these composites
Downloads
References
Zafar M. S., Amin F., Fareed M. A., Ghabbani H., Riaz S., Khurshid Z., Kumar N. Biomimetic aspects of restorative entistry biomaterials. Biomimetics. 2020; 5(3): 34. https://doi.org/10.3390/biomimetics5030034
Alhenaki A. M., Attar E. A., Alshahrani A., Farooq I., Vohra F., Abduljabbar T. Dentin bond integrity of filled and unfilled resin adhesive enhanced with silica nanoparticles – an SEM, EDX, Micro-Raman, FTIR and micro-tensile bond strength study. Polymers. 2021; 13(7): 1093. https://doi.org/10.3390/polym13071093
Timpe N., Fullriede H., Borchers L., Stiesch M., Behrens P., Menzel H. Nanoporous silica nanoparticles with spherical and anisotropic shape as fillers in dental composite materials. BioNanoMaterials. 2014;15(3–4): https://doi.org/10.1515/bnm-2014-0010
Seredin P. V., Goloshchapov D. L., Prutskij T., Ippolitov Yu. A. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics. 2017;7: 1086–1094. https://doi.org/10.1016/j.rinp.2017.02.025
Goloshchapov D. L. , Gushchin M. S. , Kashkarov V. M., Seredin P. V., Ippolitov Y. A., Khmelevsky N. O., Aksenenko A. Yu. XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite. Results in Physics. 2018;9: 1386–1387. https://doi.org/10.1016/j.rinp.2018.04.065
Goloshchapov D., Buylov N., Emelyanova A., Ippolitov I., Ippolitov Y., Kashkarov V., Khudyakov Y., Nikitkov K., Seredin P. Raman and XANES spectroscopic study of the influence of coordination atomic and molecular environments in biomimetic composite materials integrated with dental tissue. Nanomaterials. 2021;11(11): 3099. https://doi.org/10.3390/nano11113099
Provenzi C., Leitune V. C., Colares F. M., Trommer R., Bergmann C. P., Samuel S. M. Interface evaluation of experimental dental adhesives with nanostructured hydroxyapatite incorporation. Applied Adhesion Science. 2014;2(1): 2. https://doi.org/10.1186/2196-4351-2-2
Lezaja M., Jokic B. M., Veljovic D. N., Miletic V. Shear bond strength to dentine of dental adhesives containing hydroxyapatite nano-fillers. Journal of Adhesion Science and Technology. 2016;30(24): 2678–2689. https://doi.org/10.1080/01694243.2016.1197086
Leitune V. C. B., Collares F. M., Trommer R. M., Andrioli D. G., Bergmann C. P., Samuel S. M. W. The addition of nanostructured hydroxyapatite to an experimental adhesive resin. Journal of Dentistry. 2013;41(4): 321–327. https://doi.org/10.1016/j.jdent.2013.01.001
Al-Hamdan R. S., Almutairi B., Kattan H. F., Alresayes S., Abduljabbar T., Vohra F. Assessment of hydroxyapatite nanospheres incorporated dentin Aadhesive. A SEM/EDX, micro-Raman, microtensile and micro-indentation study. Coatings. 2020;10(12): 1181. https://doi.org/10.3390/coatings10121181
Daood U., Swee Heng C., Neo Chiew Lian J., Fawzy A. S. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies. International Journal of Oral Science. 2015;7(2): 110–124. https://doi.org/10.1038/ijos.2014.49
Kasraei S., Khamverdi Z. Effect of nanofiller addition to an experimental dentin adhesive on microtensile bond strength to human dentin. Journal of Dentistry of Tehran University of Medical Sciences. 2009;6(2): 1–5.
del Pilar Gutiérrez-Salazar M., Reyes-Gasga J. Microhardness and chemical composition of human tooth. Materials Research. 2003;6(3): 367–373. https://doi.org/10.1590/S1516-14392003000300011
Aydın B., Pamir T., Baltaci A., Orman M. N., Turk T. Effect of storage solutions on microhardness of crown enamel and dentin. European Journal of Dentistry. 2015;09(02): 262–266. https://doi.org/10.4103/1305-7456.156848
Souza G. M. D. Nanoparticles in restorative materials. In: Nanotechnology in Endodontics. Kishen A. (ed.). Springer International Publishing; 2015. pp. 139–171. http://link.springer.com/cГАПter/10.1007/978-3-319-13575-5_8
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.