Structural and spectroscopic studies of epitaxially overgrown GaN, n-GaN, and n+-GaN contact layers
Abstract
The paper demonstrates that the technology of plasma-assisted molecular beam epitaxy (PA MBE) can be used to form epitaxially overgrown GaN, n-GaN, and n+-GaN contact layers with a high structural quality on virtual GaN/c-Al2O3 substrates under Ga-enriched conditions at relatively low growth temperatures of ~700 °C.
It was shown that the initial stage of growth of the contact layers was accompanied by effective filtration of dislocations threading from the buffer GaN layer of the virtual substrate formed by MOCVD.
The values of residual stresses calculated using the data of Raman microspectroscopy indicate a high structural quality of GaN, n-GaN, and n+-GaN contact layers regardless of the level of silicon doping.
The contact resistance reduced to the pad width determined using the transmission line method for the structure with n+-GaN contact layer was ~0.11 Ohm·mm and for the n-GaN contact layer it was ~0.5 Ohm·mm
Downloads
References
Liu A.-C., Lai Y.-Y., Chen H.-C., Chiu A.-P., Kuo H.-C. A Brief overview of the rapid progress and proposed improvements in gallium nitride epitaxy and process for third-generation semiconductors with wide bandgap. Micromachines. 2023;14(4): 764. https://doi.org/10.3390/mi14040764
Elwaradi R., Mehta J., Ngo T. H., … Cordier Y. Effects of GaN channel downscaling in AlGaN–GaN high electron mobility transistor structures grown on AlN bulk substrate. Journal of Applied Physics. 2023; 133(14): 145705. https://doi.org/10.1063/5.0147048
Zeng X., Wu Y., He G., Zhu W., Ding S., Zeng Z. High-pure AlN crystalline thin films deposited on GaN at low temperature by plasma-enhanced ALD. Vacuum. 2023;213: 112114. https://doi.org/10.1016/j.vacuum.2023.112114
Yang L., Huang W., Wang D., … Wang X. AlN/ GaN HEMTs with fmax exceeding 300 GHz by using Ge-doped n++GaN ohmic contacts. ACS Applied Electronic Materials. 2023;5(9): 4786–4791. https://doi.org/10.1021/acsaelm.3c00555
Wu C.-Y., Chao T.-S., Chou Y.-C. A high thermal stability ohmic contact for GaN-based devices. Nanoscale Advances. 2023;5(19): 5361–5366. https://doi.org/10.1039/D3NA00491K
Greco G., Iucolano F., Roccaforte F. Ohmic contacts to gallium nitride materials. Applied Surface Science. 2016;383: 324–345. https://doi.org/10.1016/j.apsusc.2016.04.016
Liu Y. Recent research on ohmic contacts on GaN-based materials. IOP Conference Series: Materials Science and Engineering. 2020;738(1): 012007. https://doi.org/10.1088/1757-899X/738/1/012007
Ambacher O. Growth and applications of group III-nitrides. Journal of Physics D: Applied Physics. 1998;31(20): 2653–2710. https://doi.org/10.1088/0022-3727/31/20/001
Yue Y., Hu Z., Guo J., … Xing H. InAlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz. IEEE Electron Device Letters. 2012;33(7): 988–990. https://doi.org/10.1109/LED.2012.2196751
Hong S.J., Kim K. (Kevin). Low-resistance ohmic contacts for high-power GaN field-effect transistors obtained by selective area growth using plasmaassisted molecular beam epitaxy. Applied Physics Letters. 2006; 89(4):042101. https://doi.org/10.1063/1.2234566
Zheng Z., Seo H., Pang L., Kim K. (Kevin). Nonalloyed ohmic contact of AlGaN/GaN HEMTs by selective area growth of single-crystal n+-GaN using plasma assisted molecular beam epitaxy. Physica Status Solidi (a). 2011;208(4): 951–954. https://doi.org/10.1002/pssa.201026557
Guo J., Cao Y., Lian C., … Xing H. (Grace). Metalface InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy. Physica Status Solidi (a). 2011;208(7): 1617–1619. https://doi.org/10.1002/pssa.201001177
Bo Song, Mingda Zhu, Zongyang Hu, … Xing H.G. Ultralow-leakage AlGaN/GaN high electron mobility transistors on Si with non-alloyed regrown ohmic contacts. IEEE Electron Device Letters. 2016;37(1): 16–19. https://doi.org/10.1109/LED.2015.2497252
Mizerov A. M., Timoshnev S. N., Nikitina E. V., … Bouravleuv A. D. On the specific features of the plasma-assisted MBE synthesis of n+-GaN layers on GaN/c-Al2O3 templates. Semiconductors. 2019;53(9): 1187–1191. https://doi.org/10.1134/S1063782619090112
Brandt O., Yang H., Ploog K. H. Surface kinetics of zinc-blende (001) GaN. Physical Review B. 1996;54(7): 4432–4435. https://doi.org/10.1103/PhysRevB.54.4432
Wells R. J. Rapid approximation to the Voigt/Faddeeva function and its derivatives. Journal of Quantitative Spectroscopy and Radiative Transfer.1999;62(1): 29–48. https://doi.org/10.1016/S0022-4073(97)00231-8
Zsebök O., Thordson J. V., Andersson T. G. Surface morphology of MBE-grown GaN on GaAs(001) as function of the N/Ga-ratio. MRS Internet Journal of Nitride Semiconductor Research. 1998;3: 1-11. https://doi.org/10.1557/S1092578300000867
Zsebök O., Thordson J. V., Gunnarsson J. R., Zhao Q. X., Ilver L., Andersson T. G. The effect of the first GaN monolayer on the nitridation damage of molecular beam epitaxy grown GaN on GaAs(001). Journal of Applied Physics. 2001;89(7): 3662–3667. https://doi.org/10.1063/1.1345516
Liao H., Wei T., Zong H.,… Hu X. Raman investigation on the surface carrier concentration of single GaN microrod grown by MOCVD. Applied Surface Science. 2019;489: 346–350. https://doi.org/10.1016/j.apsusc.2019.05.346
Lee Y.-J., Kuo H.-C., Lu T.-C., … Lin S.-Y. Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces. Journal of Lightwave Technology. 2008;26(11): 1455–1463. https://doi.org/10.1109/JLT.2008.922151
Seredin P. V., Lenshin A. S., Mizerov A. M., Leiste H., Rinke M. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate por-Si(111). Applied Surface Science. 2019;47(6): 1049–1060. https://doi.org/10.1016/j.apsusc.2019.01.239
Ruvimov S., Liliental-Weber Z., Washburn J., … Weber E. R. Effect of N/Ga flux ratio in GaN buffer layer growth by MBE on (0001) sapphire on defect formation in the GaN main layer. MRS Proceedings. 1999;572: 295. https://doi.org/10.1557/PROC-572-295
Seredin P. V., Ternovaya V. E., Glotov A. V., … Prutskij T. X-ray diffraction studies of heterostructures based on solid solutions AlxGa1−xAsyP1−y:Si. Physics of the Solid State. 2013;55(10): 2161–2164. https://doi.org/10.1134/S1063783413100296
Seredin P. V., Glotov A. V., Lenshin A. S., … Rinke M. Structure and optical properties of heterostructures based on MOCVD (AlxGa1−xAs1−yPy)1−zSiz alloys. Semiconductors. 2014;48(1): 21–29. https://doi.org/10.1134/S1063782614010217
Seredin P. V., Goloshchapov D. L., Lenshin A. S., Mizerov A. M., Zolotukhin D. S. Influence of por-Si sublayer on the features of heteroepitaxial growth and physical properties of In x Ga 1-x N/Si(111) heterostructures with nanocolumn morphology of thin film. Physica E: Low-dimensional Systems and Nanostructures. 2018;104: 101–110. https://doi.org/10.1016/j.physe.2018.07.024
Zeng Y., Ning J., Zhang J., … Wang D. Raman analysis of E2 (High) and A1 (LO) phonon to the stressfree GaN grown on sputtered AlN/graphene buffer layer. Applied Sciences. 2020;10(24): 8814. https://doi.org/10.3390/app10248814
Davydov V. Yu., Kitaev Yu. E., Goncharuk I. N., … Evarestov R. A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B. 1998;58(19): 12899–12907. https://doi.org/10.1103/PhysRevB.58.12899
Behera S., Khare A. Characterization of sapphire (a-Al2O3) thin film fabricated by pulsed laser deposition. In: 13th International Conference on Fiber Optics and Photonics. Kanpur: OSA; 2016; P1A.15. Available at: https://opg.optica.org/abstract.cfm?URI=Photonics-2016-P1A.15
Terekhov V. A., Terukov E. I., Undalov Y. K., … Trapeznikova I. N. Effect of plasma oxygen content on the size and content of silicon nanoclusters in amorphous SiOx films obtained with plasma-enhanced chemical vapor deposition. Symmetry. 2023;15(9): 1800. https://doi.org/10.3390/sym15091800
Solonenko D., Gordan O. D., Le Lay G., Zahn D. R. T., Vogt P. Comprehensive Raman study of epitaxial silicene-related phases on Ag(111). Beilstein Journal of Nanotechnology. 2017;8: 1357–1365. https://doi.org/10.3762/bjnano.8.137
Park A. H., Seo T. H., Chandramohan S., … Suh E.-K. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale. 2015;7(37): 15099–15105. https://doi.org/10.1039/C5NR04239A
Tripathy S., Chua S. J., Chen P., Miao Z. L. Micro-Raman investigation of strain in GaN and AlxGa1−xN/GaN heterostructures grown on Si(111). Journal of Applied Physics. 2002;92(7): 3503–3510. https://doi.org/10.1063/1.1502921
Talwar D. N., Lin H.-H., Chuan Feng Z. Anisotropic optical phonons in MOCVD grown Sidoped GaN/sapphire epilayers. Materials Science and Engineering: B. 2020;260: 114615. https://doi.org/10.1016/j.mseb.2020.114615
Klootwijk J. H., Timmering C. E. Merits and limitations of circular TLM structures for contact resistance determination for novel III-V HBTs In: Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat . No.04CH37516). Awaji Yumebutai, Japan: IEEE; 2004; 247–252. Available at: http://ieeexplore.ieee.org/document/1309489/
Egorkin V. I., Zemlyakov V. E., Nezhentsev A. V., Garmash V. I., Kalyuzhnyi N. A., Mintairov S. A. Investigation of alloyed ohmic contacts in epitaxial tellurium-doped gallium arsenide layers. Russian Microelectronics. 2018;47(6): 388–392. https://doi.org/10.1134/S1063739718060045
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.