Structural and spectroscopic studies of epitaxially overgrown GaN, n-GaN, and n+-GaN contact layers

  • Pavel V. Seredin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-6724-0063
  • Dmitry L. Goloshchapov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-1400-2870
  • Danila E. Kostomakha Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Yaroslav A. Peshkov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-0939-0466
  • Nikita S. Buylov Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation https://orcid.org/0000-0003-1793-4400
  • Alisa A. Gaivoronskaya Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Andrey M. Mizerov Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation https://orcid.org/0000-0002-9125-6452
  • Sergey N. Timoshnev Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation https://orcid.org/0000-0002-9294-3342
  • Maksim S. Sobolev Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation https://orcid.org/0000-0001-8629-2064
  • Evgeniy V. Ubyivovk Saint-Petersburg State University, 7-9 Universitetskaya emb., St. Petersburg 199034, Russian Federation https://orcid.org/0000-0001-5828-4243
  • Valeriy E. Zemlyakov National Research University of Electronic Technology, 1, Shokin Square, Zelenograd, Moscow 124498, Russian Federation https://orcid.org/0000-0001-5681-9603
  • Pavel P. Kutsko Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation
  • Pavel L. Parmon Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation
Keywords: Molecular beam epitaxy, GaN, n-GaN, and n -GaN contact layers, Virtual substrate, Raman microspectroscopy

Abstract

The paper demonstrates that the technology of plasma-assisted molecular beam epitaxy (PA MBE) can be used to form epitaxially overgrown GaN, n-GaN, and n+-GaN contact layers with a high structural quality on virtual GaN/c-Al2O3 substrates under Ga-enriched conditions at relatively low growth temperatures of ~700 °C.

It was shown that the initial stage of growth of the contact layers was accompanied by effective filtration of dislocations threading from the buffer GaN layer of the virtual substrate formed by MOCVD.

The values of residual stresses calculated using the data of Raman microspectroscopy indicate a high structural quality of GaN, n-GaN, and n+-GaN contact layers regardless of the level of silicon doping.

The contact resistance reduced to the pad width determined using the transmission line method for the structure with n+-GaN contact layer was ~0.11 Ohm·mm and for the n-GaN contact layer it was ~0.5 Ohm·mm

Downloads

Download data is not yet available.

Author Biographies

Pavel V. Seredin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Head of the Department, Department of
Solid State Physics and Nanostructures, Voronezh
State University (Voronezh, Russian Federation)

Dmitry L. Goloshchapov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Assistant Professor, Department of Solid State Physics
and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Danila E. Kostomakha, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

graduate student,
Department of Solid State Physic and Nanostructures,
Voronezh State University (Voronezh, Russian
Federation)

Yaroslav A. Peshkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Research Assistant, Department of Solid State Physics
and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Nikita S. Buylov, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Educator,
Department of Solid State Physics and Nanostructures,
Voronezh State University (Voronezh, Russian
Federation)

Alisa A. Gaivoronskaya, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student, Department of
Solid State Physics and Nanostructures, Voronezh
State University (Voronezh, Russian Federation)

Andrey M. Mizerov, Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Leading Researcher, Alferov University (St. Petersburg,
Russian Federation)

Sergey N. Timoshnev, Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Leading Researcher, Alferov University (St. Petersburg,
Russian Federation)

Maksim S. Sobolev, Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Acting
Head of the Laboratory of Nanoelectronics, Alferov
University (St. Petersburg, Russian Federation)

Evgeniy V. Ubyivovk, Saint-Petersburg State University, 7-9 Universitetskaya emb., St. Petersburg 199034, Russian Federation

Cand. Sci. (Phys.–Math.),
Senior Researcher, Research Laboratory of Mechanics
of Advanced Bulk Nanomaterials for Innovative
Engineering Applications, Saint Petersburg State
University (St. Petersburg, Russian Federation)

Valeriy E. Zemlyakov, National Research University of Electronic Technology, 1, Shokin Square, Zelenograd, Moscow 124498, Russian Federation

Cand. Sci. (Eng.), Leading
Researcher, Laboratory of Nanoelectronics Element
Base, National Research University of Electronic
Technology (Moscow, Russian Federation)

Pavel P. Kutsko, Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation

Cand. Sci. (Eng.), General Director,
Research Institute of Electronic Technology (Voronezh,
Russian Federation)

Pavel L. Parmon, Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation

Director of Quality, Research
Institute of Electronic Technology (Voronezh, Russian
Federation)

References

Liu A.-C., Lai Y.-Y., Chen H.-C., Chiu A.-P., Kuo H.-C. A Brief overview of the rapid progress and proposed improvements in gallium nitride epitaxy and process for third-generation semiconductors with wide bandgap. Micromachines. 2023;14(4): 764. https://doi.org/10.3390/mi14040764

Elwaradi R., Mehta J., Ngo T. H., … Cordier Y. Effects of GaN channel downscaling in AlGaN–GaN high electron mobility transistor structures grown on AlN bulk substrate. Journal of Applied Physics. 2023; 133(14): 145705. https://doi.org/10.1063/5.0147048

Zeng X., Wu Y., He G., Zhu W., Ding S., Zeng Z. High-pure AlN crystalline thin films deposited on GaN at low temperature by plasma-enhanced ALD. Vacuum. 2023;213: 112114. https://doi.org/10.1016/j.vacuum.2023.112114

Yang L., Huang W., Wang D., … Wang X. AlN/ GaN HEMTs with fmax exceeding 300 GHz by using Ge-doped n++GaN ohmic contacts. ACS Applied Electronic Materials. 2023;5(9): 4786–4791. https://doi.org/10.1021/acsaelm.3c00555

Wu C.-Y., Chao T.-S., Chou Y.-C. A high thermal stability ohmic contact for GaN-based devices. Nanoscale Advances. 2023;5(19): 5361–5366. https://doi.org/10.1039/D3NA00491K

Greco G., Iucolano F., Roccaforte F. Ohmic contacts to gallium nitride materials. Applied Surface Science. 2016;383: 324–345. https://doi.org/10.1016/j.apsusc.2016.04.016

Liu Y. Recent research on ohmic contacts on GaN-based materials. IOP Conference Series: Materials Science and Engineering. 2020;738(1): 012007. https://doi.org/10.1088/1757-899X/738/1/012007

Ambacher O. Growth and applications of group III-nitrides. Journal of Physics D: Applied Physics. 1998;31(20): 2653–2710. https://doi.org/10.1088/0022-3727/31/20/001

Yue Y., Hu Z., Guo J., … Xing H. InAlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz. IEEE Electron Device Letters. 2012;33(7): 988–990. https://doi.org/10.1109/LED.2012.2196751

Hong S.J., Kim K. (Kevin). Low-resistance ohmic contacts for high-power GaN field-effect transistors obtained by selective area growth using plasmaassisted molecular beam epitaxy. Applied Physics Letters. 2006; 89(4):042101. https://doi.org/10.1063/1.2234566

Zheng Z., Seo H., Pang L., Kim K. (Kevin). Nonalloyed ohmic contact of AlGaN/GaN HEMTs by selective area growth of single-crystal n+-GaN using plasma assisted molecular beam epitaxy. Physica Status Solidi (a). 2011;208(4): 951–954. https://doi.org/10.1002/pssa.201026557

Guo J., Cao Y., Lian C., … Xing H. (Grace). Metalface InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy. Physica Status Solidi (a). 2011;208(7): 1617–1619. https://doi.org/10.1002/pssa.201001177

Bo Song, Mingda Zhu, Zongyang Hu, … Xing H.G. Ultralow-leakage AlGaN/GaN high electron mobility transistors on Si with non-alloyed regrown ohmic contacts. IEEE Electron Device Letters. 2016;37(1): 16–19. https://doi.org/10.1109/LED.2015.2497252

Mizerov A. M., Timoshnev S. N., Nikitina E. V., … Bouravleuv A. D. On the specific features of the plasma-assisted MBE synthesis of n+-GaN layers on GaN/c-Al2O3 templates. Semiconductors. 2019;53(9): 1187–1191. https://doi.org/10.1134/S1063782619090112

Brandt O., Yang H., Ploog K. H. Surface kinetics of zinc-blende (001) GaN. Physical Review B. 1996;54(7): 4432–4435. https://doi.org/10.1103/PhysRevB.54.4432

Wells R. J. Rapid approximation to the Voigt/Faddeeva function and its derivatives. Journal of Quantitative Spectroscopy and Radiative Transfer.1999;62(1): 29–48. https://doi.org/10.1016/S0022-4073(97)00231-8

Zsebök O., Thordson J. V., Andersson T. G. Surface morphology of MBE-grown GaN on GaAs(001) as function of the N/Ga-ratio. MRS Internet Journal of Nitride Semiconductor Research. 1998;3: 1-11. https://doi.org/10.1557/S1092578300000867

Zsebök O., Thordson J. V., Gunnarsson J. R., Zhao Q. X., Ilver L., Andersson T. G. The effect of the first GaN monolayer on the nitridation damage of molecular beam epitaxy grown GaN on GaAs(001). Journal of Applied Physics. 2001;89(7): 3662–3667. https://doi.org/10.1063/1.1345516

Liao H., Wei T., Zong H.,… Hu X. Raman investigation on the surface carrier concentration of single GaN microrod grown by MOCVD. Applied Surface Science. 2019;489: 346–350. https://doi.org/10.1016/j.apsusc.2019.05.346

Lee Y.-J., Kuo H.-C., Lu T.-C., … Lin S.-Y. Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces. Journal of Lightwave Technology. 2008;26(11): 1455–1463. https://doi.org/10.1109/JLT.2008.922151

Seredin P. V., Lenshin A. S., Mizerov A. M., Leiste H., Rinke M. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate por-Si(111). Applied Surface Science. 2019;47(6): 1049–1060. https://doi.org/10.1016/j.apsusc.2019.01.239

Ruvimov S., Liliental-Weber Z., Washburn J., … Weber E. R. Effect of N/Ga flux ratio in GaN buffer layer growth by MBE on (0001) sapphire on defect formation in the GaN main layer. MRS Proceedings. 1999;572: 295. https://doi.org/10.1557/PROC-572-295

Seredin P. V., Ternovaya V. E., Glotov A. V., … Prutskij T. X-ray diffraction studies of heterostructures based on solid solutions AlxGa1−xAsyP1−y:Si. Physics of the Solid State. 2013;55(10): 2161–2164. https://doi.org/10.1134/S1063783413100296

Seredin P. V., Glotov A. V., Lenshin A. S., … Rinke M. Structure and optical properties of heterostructures based on MOCVD (AlxGa1−xAs1−yPy)1−zSiz alloys. Semiconductors. 2014;48(1): 21–29. https://doi.org/10.1134/S1063782614010217

Seredin P. V., Goloshchapov D. L., Lenshin A. S., Mizerov A. M., Zolotukhin D. S. Influence of por-Si sublayer on the features of heteroepitaxial growth and physical properties of In x Ga 1-x N/Si(111) heterostructures with nanocolumn morphology of thin film. Physica E: Low-dimensional Systems and Nanostructures. 2018;104: 101–110. https://doi.org/10.1016/j.physe.2018.07.024

Zeng Y., Ning J., Zhang J., … Wang D. Raman analysis of E2 (High) and A1 (LO) phonon to the stressfree GaN grown on sputtered AlN/graphene buffer layer. Applied Sciences. 2020;10(24): 8814. https://doi.org/10.3390/app10248814

Davydov V. Yu., Kitaev Yu. E., Goncharuk I. N., … Evarestov R. A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B. 1998;58(19): 12899–12907. https://doi.org/10.1103/PhysRevB.58.12899

Behera S., Khare A. Characterization of sapphire (a-Al2O3) thin film fabricated by pulsed laser deposition. In: 13th International Conference on Fiber Optics and Photonics. Kanpur: OSA; 2016; P1A.15. Available at: https://opg.optica.org/abstract.cfm?URI=Photonics-2016-P1A.15

Terekhov V. A., Terukov E. I., Undalov Y. K., … Trapeznikova I. N. Effect of plasma oxygen content on the size and content of silicon nanoclusters in amorphous SiOx films obtained with plasma-enhanced chemical vapor deposition. Symmetry. 2023;15(9): 1800. https://doi.org/10.3390/sym15091800

Solonenko D., Gordan O. D., Le Lay G., Zahn D. R. T., Vogt P. Comprehensive Raman study of epitaxial silicene-related phases on Ag(111). Beilstein Journal of Nanotechnology. 2017;8: 1357–1365. https://doi.org/10.3762/bjnano.8.137

Park A. H., Seo T. H., Chandramohan S., … Suh E.-K. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale. 2015;7(37): 15099–15105. https://doi.org/10.1039/C5NR04239A

Tripathy S., Chua S. J., Chen P., Miao Z. L. Micro-Raman investigation of strain in GaN and AlxGa1−xN/GaN heterostructures grown on Si(111). Journal of Applied Physics. 2002;92(7): 3503–3510. https://doi.org/10.1063/1.1502921

Talwar D. N., Lin H.-H., Chuan Feng Z. Anisotropic optical phonons in MOCVD grown Sidoped GaN/sapphire epilayers. Materials Science and Engineering: B. 2020;260: 114615. https://doi.org/10.1016/j.mseb.2020.114615

Klootwijk J. H., Timmering C. E. Merits and limitations of circular TLM structures for contact resistance determination for novel III-V HBTs In: Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat . No.04CH37516). Awaji Yumebutai, Japan: IEEE; 2004; 247–252. Available at: http://ieeexplore.ieee.org/document/1309489/

Egorkin V. I., Zemlyakov V. E., Nezhentsev A. V., Garmash V. I., Kalyuzhnyi N. A., Mintairov S. A. Investigation of alloyed ohmic contacts in epitaxial tellurium-doped gallium arsenide layers. Russian Microelectronics. 2018;47(6): 388–392. https://doi.org/10.1134/S1063739718060045

Published
2024-07-12
How to Cite
Seredin, P. V., Goloshchapov, D. L., Kostomakha, D. E., Peshkov, Y. A., Buylov, N. S., Gaivoronskaya, A. A., Mizerov, A. M., Timoshnev, S. N., Sobolev, M. S., Ubyivovk, E. V., Zemlyakov, V. E., Kutsko, P. P., & Parmon, P. L. (2024). Structural and spectroscopic studies of epitaxially overgrown GaN, n-GaN, and n+-GaN contact layers. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(3), 526-535. https://doi.org/10.17308/kcmf.2024.26/12228
Section
Original articles

Most read articles by the same author(s)