Molecular beam epitaxy of metamorphic buffer for InGaAs/InP photodetectors with high photosensitivity in the range of 2.2–2.6 um
Abstract
The present work is concerned with finding optimal technological conditions for the synthesis of heterostructures with a metamorphic buffer for InGaAs/InP photodetectors in the wavelength range of 2.2–2.6 um using molecular beam epitaxy. Three choices of buffer structure differing in design and growth parameters were proposed.
The internal structure of the grown samples was investigated by X-ray diffraction and transmission electron microscopy. Experimental data analysis has shown that the greatest degree of elastic strain relaxation in the InGaAs active layer was achieved in the sample where the metamorphic buffer formation ended with a consecutive increase and decrease in temperature. The said buffer also had InAs/InAlAs superlattice inserts.
The dislocation density in this sample turned out to be minimal out of three, which allowed us to conclude that the described heterostructure configuration appears to be the most appropriate for manufacturing of short wavelength infrared range pin-photodetectors with high photosensitivity.
Downloads
References
Zhang Y., Gu Y. Gas source MBE grown wavelength extending InGaAs photodetectors. Advances in Photodiodes. IntechOpen; 2011. https://doi.org/10.5772/13910
Zhang Y., Gu Y., Zhu C., Hao G., Li A., Liu T. Gas source MBE grown wavelength extended 2.2 and 2.5μm InGaAs PIN photodetectors. Infrared Physics & Technology. 2006;47(3): 257–62. https://doi.org/10.1016/j.infrared.2005.02.031
Lavrukhin D. V., Yachmenev A. E., Galiev R. R., Khabibullin R. A., Ponomarev D. S., Fedorov Y. V., Maltsev P. P. MHEMT with a power-gain cut-off frequency of fmax = 0.63 THz on the basis of a In 0. 42Al0. 58 As/In0. 42Ga0. 58As/In0. 42Al0.58As/GaAs nanoheterostructure. Semiconductors. 2014;48(1): 69–72. https://doi.org/10.1134/S1063782614010187
Kirch J., Garrod T., Kim S., … Kuan T. S. InAsyP1−y metamorphic buffer layers on InP substrates for mid-IR diode lasers. Journal of Crystal Growth. 2010;312(8): 1165–1169. https://doi.org/10.1016/j.jcrysgro.2009.12.057
Jones R. K., Hebert P., Pien P., … Karam N. Status of 40% production efficiency concentrator cells at Spectrolab. 2010 35th IEEE Photovoltaic Specialists Conference. 2010. p. 000189–000195.: https://doi.org/10.1109/PVSC.2010.5614535
Tersoff J. Dislocations and strain relief in compositionally graded layers. Applied Physics Letters. 1993;62(7): 693–5. https://doi.org/10.1063/1.108842
Chen X., Gu Y., Zhang Y. Epitaxy and device properties of InGaAs photodetectors with relatively high lattice mismatch. В: Zhong M. (ed.). In: Epitaxy. In Tech; 2018. https://doi.org/10.5772/intechopen.70259
Zakaria A., King R. R., Jackson M., Goorsky M. S. Comparison of arsenide and phosphide based graded buffer layers used in inverted metamorphic solar cells. Journal of Applied Physics. 2012;112(2): 024907. https://doi.org/10.1063/1.4737788
Zhang Y. G., Gu Y., Tian Z. B., Wang K., Li A. Z., Zhu X. R., Zheng Y. L. Performance of gas source MBEgrown wavelength-extended InGaAs photodetectors with different buffer structures. Journal of Crystal Growth. 2009;311(7): 1881–1884. https://doi.org/10.1016/j.jcrysgro.2008.10.087
Burlakov I. D., Grinchenko L. Y., Dirochka A. I., Zaletaev N. B. Short wavelength infrared InGaAs detectors (a review). Advances in Applied Physics (Uspekhi Prikladnoi Fiziki). 2014;2(2): 131-136. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=21505376
Horikawa H., Ogawa Y., Kawai Y., Sakuta M. Heteroepitaxial growth of InP on a GaAs substrate by low-pressure metalorganic vapor phase epitaxy. Applied Physics Letters. 1988;53(5): 397–399. https://doi.org/10.1063/1.99890
Kaminska M., Liliental-Weber Z., Weber E. R., George T., Kortright J. B., Smith F. W., Tsaur B., Calawa A. R. Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters. 1989;54(19): 1881–1883. https://doi.org/10.1063/1.101229
Franzosi P., Salviati G., Genova F., Stano A., Taiariol F. Misfit dislocations in InGaAs/InP mbe single heterostructures. Journal of Crystal Growth. 1986;75(3): 521–534. https://doi.org/10.1016/0022-0248(86)90098-9
Pobat D. B., Solov’ev V. A., Chernov M. Y., Ivanov S. V. Distribution of misfit dislocations and elastic mechanical stresses in metamorphic buffer InAlAs layers of various constructions. Physics of the Solid State. 2021;63(1): 84-89. https://doi.org/10.1134/S1063783421010170
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.