Molecular beam epitaxy of metamorphic buffer for InGaAs/InP photodetectors with high photosensitivity in the range of 2.2–2.6 um

  • Elena I. Vasilkova Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation https://orcid.org/0000-0002-0349-7134
  • Evgeny V. Pirogov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation https://orcid.org/0000-0001-7186-3768
  • Maxim S. Sobolev Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation https://orcid.org/0000-0001-8629-2064
  • Evgeny V. Ubiyvovk Saint Petersburg State University, Universitetskaja nab., 7–9, Saint Petersburg 199034, Russian Federation https://orcid.org/0000-0001-5828-4243
  • Andrey M. Mizerov Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation https://orcid.org/0000-0002-9125-6452
  • Pavel V. Seredin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-6724-0063
Keywords: Molecular beam epitaxy, Metamorphic buffer, Short wavelength infrared range photodetectors, X-ray diffraction analysis, Transmission electron microscopy

Abstract

     The present work is concerned with finding optimal technological conditions for the synthesis of heterostructures with a metamorphic buffer for InGaAs/InP photodetectors in the wavelength range of 2.2–2.6 um using molecular beam epitaxy. Three choices of buffer structure differing in design and growth parameters were proposed.
      The internal structure of the grown samples was investigated by X-ray diffraction and transmission electron microscopy. Experimental data analysis has shown that the greatest degree of elastic strain relaxation in the InGaAs active layer was achieved in the sample where the metamorphic buffer formation ended with a consecutive increase and decrease in temperature. The said buffer also had InAs/InAlAs superlattice inserts.
     The dislocation density in this sample turned out to be minimal out of three, which allowed us to conclude that the described heterostructure configuration appears to be the most appropriate for manufacturing of short wavelength infrared range pin-photodetectors with high photosensitivity.

Downloads

Download data is not yet available.

Author Biographies

Elena I. Vasilkova, Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation

Engineer, postgraduate student
at the Saint Petersburg National Research Academic
University of the Russian Academy of Sciences (Saint
Petersburg, Russian Federation).

Evgeny V. Pirogov, Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation

Researcher, Saint Petersburg
National Research Academic University of the Russian
Academy of Sciences (Saint Petersburg, Russian
Federation).

Maxim S. Sobolev, Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Head
of the Laboratory, Saint Petersburg National Research
Academic University of the Russian Academy of
Sciences (Saint Petersburg, Russian Federation).

Evgeny V. Ubiyvovk, Saint Petersburg State University, Universitetskaja nab., 7–9, Saint Petersburg 199034, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Saint Petersburg State University (Saint
Petersburg, Russian Federation).

Andrey M. Mizerov, Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopina str., 8k3, lit. А, Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Leading Researcher, Saint Petersburg National
Research Academic University of the Russian Academy
of Sciences, (Saint Petersburg, Russian Federation).

Pavel V. Seredin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Chair of department, Department of Solid
State Physics and Nanostructures, Voronezh State
University,(Voronezh, Russian Federation).

References

Zhang Y., Gu Y. Gas source MBE grown wavelength extending InGaAs photodetectors. Advances in Photodiodes. IntechOpen; 2011. https://doi.org/10.5772/13910

Zhang Y., Gu Y., Zhu C., Hao G., Li A., Liu T. Gas source MBE grown wavelength extended 2.2 and 2.5μm InGaAs PIN photodetectors. Infrared Physics & Technology. 2006;47(3): 257–62. https://doi.org/10.1016/j.infrared.2005.02.031

Lavrukhin D. V., Yachmenev A. E., Galiev R. R., Khabibullin R. A., Ponomarev D. S., Fedorov Y. V., Maltsev P. P. MHEMT with a power-gain cut-off frequency of fmax = 0.63 THz on the basis of a In 0. 42Al0. 58 As/In0. 42Ga0. 58As/In0. 42Al0.58As/GaAs nanoheterostructure. Semiconductors. 2014;48(1): 69–72. https://doi.org/10.1134/S1063782614010187

Kirch J., Garrod T., Kim S., … Kuan T. S. InAsyP1−y metamorphic buffer layers on InP substrates for mid-IR diode lasers. Journal of Crystal Growth. 2010;312(8): 1165–1169. https://doi.org/10.1016/j.jcrysgro.2009.12.057

Jones R. K., Hebert P., Pien P., … Karam N. Status of 40% production efficiency concentrator cells at Spectrolab. 2010 35th IEEE Photovoltaic Specialists Conference. 2010. p. 000189–000195.: https://doi.org/10.1109/PVSC.2010.5614535

Tersoff J. Dislocations and strain relief in compositionally graded layers. Applied Physics Letters. 1993;62(7): 693–5. https://doi.org/10.1063/1.108842

Chen X., Gu Y., Zhang Y. Epitaxy and device properties of InGaAs photodetectors with relatively high lattice mismatch. В: Zhong M. (ed.). In: Epitaxy. In Tech; 2018. https://doi.org/10.5772/intechopen.70259

Zakaria A., King R. R., Jackson M., Goorsky M. S. Comparison of arsenide and phosphide based graded buffer layers used in inverted metamorphic solar cells. Journal of Applied Physics. 2012;112(2): 024907. https://doi.org/10.1063/1.4737788

Zhang Y. G., Gu Y., Tian Z. B., Wang K., Li A. Z., Zhu X. R., Zheng Y. L. Performance of gas source MBEgrown wavelength-extended InGaAs photodetectors with different buffer structures. Journal of Crystal Growth. 2009;311(7): 1881–1884. https://doi.org/10.1016/j.jcrysgro.2008.10.087

Burlakov I. D., Grinchenko L. Y., Dirochka A. I., Zaletaev N. B. Short wavelength infrared InGaAs detectors (a review). Advances in Applied Physics (Uspekhi Prikladnoi Fiziki). 2014;2(2): 131-136. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=21505376

Horikawa H., Ogawa Y., Kawai Y., Sakuta M. Heteroepitaxial growth of InP on a GaAs substrate by low-pressure metalorganic vapor phase epitaxy. Applied Physics Letters. 1988;53(5): 397–399. https://doi.org/10.1063/1.99890

Kaminska M., Liliental-Weber Z., Weber E. R., George T., Kortright J. B., Smith F. W., Tsaur B., Calawa A. R. Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters. 1989;54(19): 1881–1883. https://doi.org/10.1063/1.101229

Franzosi P., Salviati G., Genova F., Stano A., Taiariol F. Misfit dislocations in InGaAs/InP mbe single heterostructures. Journal of Crystal Growth. 1986;75(3): 521–534. https://doi.org/10.1016/0022-0248(86)90098-9

Pobat D. B., Solov’ev V. A., Chernov M. Y., Ivanov S. V. Distribution of misfit dislocations and elastic mechanical stresses in metamorphic buffer InAlAs layers of various constructions. Physics of the Solid State. 2021;63(1): 84-89. https://doi.org/10.1134/S1063783421010170

Published
2023-03-09
How to Cite
Vasilkova, E. I., Pirogov, E. V., Sobolev, M. S., Ubiyvovk, E. V., Mizerov, A. M., & Seredin, P. V. (2023). Molecular beam epitaxy of metamorphic buffer for InGaAs/InP photodetectors with high photosensitivity in the range of 2.2–2.6 um. Condensed Matter and Interphases, 25(1), 20-26. https://doi.org/10.17308/kcmf.2023.25/10972
Section
Original articles

Most read articles by the same author(s)