Diffractometric studies of the PA MBE grown of GaN layers on silicon substrates without their nitridation and an intermediate AlN nucleation layers

Keywords: Plasma-assisted molecular beam epitaxy, GaN layers, Silicon substrate, X-ray diffraction, Strain-free GaN films

Abstract

Purpose: The paper describes structural features of the growth of GaN layers synthesized by plasma-assisted molecular beam epitaxy on silicon substrates without substrate nitridation and without the formation of an aluminum-containing interlayer.

Experimental: High-resolution X-ray diffractometry was used to show that the proposed method can be used to grow strainfree GaN films.

It was found that in GaN layers grown directly on the Si substrate after its surface passivation by Ga atoms, the value of residual strain was at 300 MPa, while the use of indium atoms as a surfactant during the growth of the GaN layer resulted in a higher residual strain.

Conclusions: The obtained results are important for understanding the viability of the proposed approach for the formation of GaN layers directly integrated with Si without substrate nitridation and the formation of an aluminum-containing buffer. This method opens new opportunities for designing AIIIN-based optoelectronic devices

Downloads

Download data is not yet available.

Author Biographies

Pavel V. Seredin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full Professor, Chair of Department of Solid State Physics and
Nanostructures, Voronezh State University (Voronezh, Russian Federation)

Olga K. Kosheleva, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student, Department of Solid State Physics and Nanostructures, Voronezh State
University (Voronezh, Russian Federation)

Dmitry L. Goloshchapov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Assistant Professor, Department of Solid State Physics and
Nanostructures, Voronezh State University (Voronezh, Russian Federation)

Nikita S. Buylov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Educator, Department of Solid State Physics and Nanostructures,
Voronezh State University (Voronezh, Russian Federation)

Yaroslav A. Peshkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Laboratory Research Assistant, Department of Solid State Physics and Nanostructures,
Voronezh State University (Voronezh, Russian Federation)

Andrey Mikhailovich Mizerov, Alferov University, 8 ul. Khlopina, Bld. 3, letter A, Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Leading Researcher, Alferov University, (Saint Petersburg,
Russian Federation)

Sergey N. Timoshnev, Alferov University, 8 ul. Khlopina, Bld. 3, letter A, Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Leading Researcher, Alferov University (Saint Petersburg, Russian
Federation)

Maksim S. Sobolev, Alferov University, 8 ul. Khlopina, Bld. 3, letter A, Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Acting Head of the Laboratory of Nanoelectronics, Alferov University
(Saint Petersburg, Russian Federation)

Shukrilo Sh. Sharofidinov, Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Politekhnicheskaya st., Saint Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Researcher, Ioffe Physical Technical Institute, Russian
Academy of Sciences (Saint Petersburg, Russian Federation)

References

Li J., Xu Y., Tao J., … Xu K. Study on nucleation and growth mode of GaN on patterned graphene by epitaxial lateral overgrowth. Crystal Growth & Design. 2023;23(8): 5541–5547. https://doi.org/10.1021/acs.cgd.3c00171

Almalawi D., Lopatin S., Edwards P. R., … Roqan I. S. Simultaneous growth strategy of high-optical-efficiency GaN NWs on a wide range of substrates by pulsed laser deposition. ACS Omega. 2023;8(49): 46804–46815. https://doi.org/10.1021/acsomega.3c06302

Lim S. H., Bin Dolmanan S., Tong S. W., Liu H. Temperature dependent lattice expansions of epitaxial GaNon-Si heterostructures characterized by in- and ex-situ X-ray diffraction. Journal of Alloys and Compounds. 2021;868: 159181. https://doi.org/10.1016/j.jallcom.2021.159181

Seredin P. V., Lenshin A. S., Zolotukhin D. S., Arsentyev I. N., Zhabotinskiy A. V., Nikolaev D. N. Impact of the substrate misorientation and its preliminary etching on the structural and optical properties of integrated GaAs/Si MOCVD heterostructures. Physica E: Low-dimensional Systems and Nanostructures. 2018;97: 218–225. https://doi.org/10.1016/j.physe.2017.11.018

Seredin P. V., Goloshchapov D. L., Lenshin A. S., Mizerov A. M., Zolotukhin D. S. Influence of por-Si sublayer on the features of heteroepitaxial growth and physical properties of InxGa1-xN/Si(111) heterostructures with nanocolumn morphology of thin film. Physica E: Lowdimensional Systems and Nanostructures. 2018;104: 101–110. https://doi.org/10.1016/j.physe.2018.07.024

Mizerov A. M., Timoshnev S. N., Sobolev M. S., … Bouravleuv A. D. Features of the initial stage of GaN growth o i(111) substrates by nitrogen-plasma-assisted molecularbeam epitaxy. Semiconductors. 2018;52(12): 1529–1533. https://doi.org/10.1134/S1063782618120175

Vasilkova E. I., Pirogov E. V., Sobolev M. S., Ubiyvovk E. V., Mizerov A. M., Seredin P. V. Molecular beam epitaxy of metamorphic buffer for InGaAs/InP photodetectors with high photosensitivity in the range of 2.2-2.6 um. Condensed Matter and Interphases. 2023;25(1): 20–26. https://doi.org/10.17308/kcmf.2023.25/10972

Seredin P. V., Glotov A. V., Domashevskaya E. P., Arsentyev I. N., Vinokurov D. A., Tarasov I. S. Structural features and surface morphology of AlxGayIn1-x-yAszP1-z/ GaAs(1 0 0) heterostructures. Applied Surface Science. 2013; 267: 181–184. https://doi.org/10.1016/j.apsusc.2012.09.053

Lee J.-H., Im K.-S. Growth of high quality GaN on Si (111) substrate by using two-step growth method for vertical power devices application. Crystals. 2021;11(3): 234. https://doi.org/10.3390/cryst11030234

Zheng C. D., Mo C. L., Fang W. Q., Jiang F. Y. Effect of the conduction type of Si (111) substrates on the performance of GaN MQW LED epitaxial films. Advanced Materials Research. 2013;750–752: 1029–1033. https://doi.org/10.4028/www.scientific.net/AMR.750-752.1029

Ene V. L., Dinescu D., Djourelov N., … Andronescu E. Defect structure determination of GaN films in GaN/AlN/Si heterostructures by HR-TEM, XRD, and slow positrons experiments. Nanomaterials. 2020;10(2): 197. https://doi.org/10.3390/nano10020197

Lee H.-P., Perozek J., Rosario L. D., Bayram C. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations. Scientific Reports. 2016;6(1): 37588. https://doi.org/10.1038/srep37588

Xue J. J., Chen D. J., Liu B., … Zhang J. P. Indium-rich InGaN epitaxial layers grown pseudomorphically on a anosculpted InGaN template. Optics Express. 2012;20(7): 8093. https://doi.org/10.1364/OE.20.008093

Ng T. K., Holguin-Lerma J. A., Kang C. H., … Ooi B. S. Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. Journal of Physics D: Applied Physics. 2021;54(14): 143001. https://doi.org/10.1088/1361-6463/abd65a

Morkoç H. Handbook of nitride semiconductors and devices: materials properties, physics and growth. 1st ed. Wiley; 2008. https://doi.org/10.1002/9783527628438

Group IV elements, IV-IV and III-V compounds. Part a - lattice properties. Madelung O., Rössler U., Schulz M. (eds.). Berlin/Heidelberg: Springer-Verlag; 2001; a1–7. https://doi.org/10.1007/b60136

Kisielowski C., Krüger J., Ruvimov S., … Davis R. F. Strain-related phenomena in GaN thin films. Physical Review B. 1996;54(24): 17745–17753. https://doi.org/10.1103/PhysRevB.54.17745

Harutyunyan V. S., Aivazyan A. P., Weber E. R., Kim Y., Park Y., Subramanya S. G. High-resolution X-ray diffraction strain-stress analysis of GaN/sapphire heterostructures. Journal of Physics D: Applied Physics. 2001;34(10A): A35–A39. https://doi.org/10.1088/0022-3727/34/10A/308

Seredin P. V., Glotov A. V., Ternovaya V. E., … Tarasov I. S. Effect of silicon on relaxation of the crystal lattice in MOCVD–hydride AlxGa1−x As:Si/GaAs(100) heterostructures. Semiconductors. 2011;45(4): 481–492. https://doi.org/10.1134/S106378261104021X

Seredin P. V., Leiste H., Lenshin A. S., Mizerov A. M. Effect of the transition porous silicon layer on the properties of hybrid GaN/SiC/por-Si/Si(1 1 1) heterostructures. Applied Surface Science. 2020;508: 145267. https://doi.org/10.1016/j.apsusc.2020.145267

Li Z., Jiu L., Gong Y., … Wang T. Semi-polar (11-22) AlGaN on overgrown GaN on micro-rod templates: simultaneous management of crystal quality improvement and cracking issue. Applied Physics Letters. 2017;110(8): 082103. https://doi.org/10.1063/1.4977094

Published
2025-04-09
How to Cite
Seredin, P. V., Kosheleva, O. K., Goloshchapov, D. L., Buylov, N. S., Peshkov, Y. A., Mizerov, A. M., Timoshnev, S. N., Sobolev, M. S., & Sharofidinov, S. S. (2025). Diffractometric studies of the PA MBE grown of GaN layers on silicon substrates without their nitridation and an intermediate AlN nucleation layers. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(2), 308-315. https://doi.org/10.17308/kcmf.2025.27/12810
Section
Original articles

Most read articles by the same author(s)