Sedimentation of bentonite suspensions under the influence of low molecular weight polymers based on amino ester salts

Keywords: Flocculation, Coagulation, Amino esters, Sedimentation rate, Rheological properties, Bentonite, Drilling fluid

Abstract

    Among the available technologies for treating natural and wastewater from clay materials, coagulation/flocculation is the most common method due to its high efficiency, simplicity, and cost-effectiveness. Inorganic coagulants such as aluminum sulfate and ferric chloride, widely used as destabilizing agents for colloidal particles, have several significant drawbacks: low efficiency and toxicity. Organic reagents of both natural and synthetic origin are a good alternative.
    This work is devoted to the evaluation of the flocculation action of new reagents, which are low molecular weight polymers based on amino ester salts on clay suspensions, as well as the selection of their optimal concentration, providing the maximum sedimentation rate.
    Studies have shown that amino ester salts can be effectively used for the treatment of water-clay suspensions. An important factor is the nature of the anion used, which has a significant influence on the  oagulation ability of esters. Thus, 40–50 % (wt.) aqueous solutions of amino ester chlorides added to clay suspensions in an amount not exceeding 0.1% (vol.) can be used to thicken clay suspensions. At the same time, aqueous solutions of amino ester bromides regardless of the concentration, introduced into bentonite suspensions of 0.1–0.4 % (vol.), contribute to improved sedimentation, reducing viscosity, and increasing filtration capacity. These results allow us to recommend the use of amino ester chlorides as a
thickener in the preparation of drilling muds for strengthening the walls of wells during drilling, and bromides – for flocculation of bentonite suspensions in oil production

Downloads

Download data is not yet available.

Author Biographies

Dmitriy Yu. Vandyshev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Chem.), Associate Professor of the Department of Organic Chemistry, Voronezh State University (Voronezh, Russian Federation)

Olga V. Sleptsova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Chem.), Associate Professor of the Department of High Molecular Compounds and Colloidal Chemistry, Voronezh State University (Voronezh, Russian Federation)

Vladislav Yu. Gazin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Master’s student of the 2nd year of the Department of Organic Chemistry, Voronezh State University (Voronezh, Russian Federation)

Stanislav A. Malyutin, JSC Petrochem, 14, Rabochaya st., Belgorod 308017, Russian Federation

Cand. Sci. (Tech.), General Director of JSC Petrochem (Belgorod, Russian Federation)

Naum R. Malkin, JSC Petrochem, 14, Rabochaya st., Belgorod 308017, Russian Federation

Chief Technologist of JSC Petrochem (Belgorod, Russian Federation)

Khidmet S. Shikhaliev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Chem.), Professor, Head of the Department of Organic Chemistry, Voronezh State University (Voronezh, Russian Federation)

References

Abu-Jdayil B. Rheology of sodium and calcium bentonite-water dispersions: Effect of electrolytes and aging time. International Journal of Mineral Processing. 2011;98(3-4): 208–213. https://doi.org/10.1016/j.minpro.2011.01.001

Karnland O. Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository. Stockholm: Clay Technology AB; Technical Report, SKB-TR-10-60, 2010. 25 p.

Duman O., Tunç S. Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Microporous Mesoporous Materials. 2009;117(1-2): 331–338. https://doi.org/10.1016/j.micromeso.2008.07.007

Tchobanoglous G., Burton F. L., Stensel H. D. Wastewater engineering: treatment and reuse. Metcalf & Eddy Inc., McGraw-Hill Education, Boston; 2003. 1819 p.

Shaikh S. M. R., Nasser M. S., Hussein I. A., Benamor A. Investigation of the effect of polyelectrolyte structure and type on the electrokinetics and flocculation behavior of bentonite dispersions. Chemical Engineering Journal. 2017;311: 265–276. https://doi.org/10.1016/j.cej.2016.11.098

Zhang B., Su H., Gu X., X. Huang. Wang H. Effect of structure and charge of polysaccharide flocculants on their flocculation performance for bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013;436: 443–449. https://doi.org/10.1016/j.colsurfa.2013.07.017

Carlson L. Bentonite Mineralogy. Working Report. POSIVA OY, Finland. 2004. 189 p.

Karimi L., Salem A. The role of bentonite particle size distribution on kinetic of cation exchange capacity. Journal of Industrial and Engineering Chemistry. 2011;17(1): 90–95. https://doi.org/10.1016/j.jiec.2010.12.002

Nasser M. S., Twaiq F. A., Onaizi S. A. Effect of polyelectrolytes on the degree of flocculation of papermaking suspensions. Separation and Purification Technology. 2013;103: 43–52. https://doi.org/10.1016/j.seppur.2012.10.024

Yousefi S. A., Nasser M. S., Hussein I. A., Benamor A., El-Naas M. H. Influence of polyelectrolyte structure and type on the degree of flocculation and rheological behavior of industrial MBR sludge. Separation and Purification Technology, 2020;233: 116001. https://doi.org/10.1016/j.seppur.2019.116001

Chatterjee T., Chatterjee S., Woo S. H. Enhanced coagulation of bentonite particles in water by a modified chitosan biopolymer. Chemical Engineering Journal. 2009;148(2-3): 414–419. https://doi.org/10.1016/j.cej.2008.09.016

Ghernaout D., Ghernaout B., Boucherit A. Effect of pH on electrocoagulation of bentonite suspensions in batch using iron electrodes. Journal of Dispersion Science and Technology. 2008;29(9): 1272–1275. https://doi.org/10.1080/01932690701857483

Hilal N., Ogunbiyi O. O., Al-Abri M. Neural network modeling for separation of bentonite in tubular ceramic membranes. Desalination. 2008;228(1-3): 175–182. https://doi.org/10.1016/j.desal.2007.10.006

Ju S., Weber M. E. Mujumdar A. S. Electroosmotic dewatering of bentonite suspensions. Separations Technology. 1991;1(4): 214–221. https://doi.org/10.1016/0956-9618(91)80016-s

Mahmoud A., Fernandez A., Chituchi T. M., Arlabosse P. Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: Analysis of the influence of the operating conditions using the response surface methodology. Chemosphere. 2008;72(11): 1765–1773. https://doi.org/10.1016/j.chemosphere.2008.04.075

Shaikh S. M. R., Nasser M. S., Magzoub M., Benamor A., Hussein I. A., El-Naas M. H. Qiblawey H. Effect of electrolytes on electrokinetics and flocculation behavior of bentonite-polyacrylamide dispersions. Applied Clay Science. 2018;158: 46–54. https://doi.org/10.1016/j.clay.2018.03.017

Shaikh S. M. R., Nasser M. S., Hussein I., Benamor A., Onaizi S. A., Qiblawey H. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review. Separation and Purification Technology. 2017;187: 137–161. https://doi.org/10.1016/j.seppur.2017.06.050

Lee C. S., Robinson J., Chong M. F. A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 2014;92(6): 489–508. https://doi.org/10.1016/j.psep.2014.04.010

Lin J. L., Huang C., Chin C. J. M., Pan J. R. Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms. Water Research. 2008;42(17): 4457–4466. https://doi.org/10.1016/j.watres.2008.07.043

Barbot E., Dussouillez P., Bottero J. Y., Moulin P. Coagulation of bentonite suspension by polyelectrolytes or ferric chloride: Floc breakage and reformation. Chemical Engineering Journal. 2010;156(1): 83–91. https://doi.org/10.1016/j.cej.2009.10.001

Daifa M., Shmoeli E., Domb A. J. Enhanced flocculation activity of polyacrylamide-based flocculant for purification of industrial wastewater. Polymers for Advanced Technologies. 2019;30: 2636–2646. https://doi.org/10.1002/pat.4730

Ma J., Shi J., Ding L., … Fu K. Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation. Separation and Purification Technology. 2018;197: 407–417. https://doi.org/10.1016/j.seppur.2018.01.036

Liu T., Ding E., Xue F. Polyacrylamide and poly(N.N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. International Journal of Biological Macromolecules. 2017;103: 1107–1112. https://doi.org/10.1016/j.ijbiomac.2017.05.098

Nasser M. S., James A. E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Separation and Purification Technology. 2006;52: 241–252. https://doi.org/10.1016/j.seppur.2006.04.005

Smith E. L., Abbott A. P., Ryder K. S. Deep eutectic solvents (DESs) and their 186 applications. Chemical Reviews. 2014;114(21): 11060–11082. https://doi.org/10.1021/cr300162p

Zhang Q., De Oliveira Vigier K., Royer S., Jérôme F. Deep eutectic solvents: Syntheses. properties and applications. Chemical Society Reviews. 2012;41(21): 7108–7146. https://doi.org/10.1039/c2cs35178a

Shomurodov A., Makhsumov A., Ismailov B., Obidov S. B. N-diethanoloiloamino-(butin-2-il)-sorbinate and its physico-chemical properties. Universum: Chemistry & Biology. 2021;6(84): 20–24. (In Russ., abstract in Eng.). https://doi.org/10.32743/UniChem.2021.84.6.11856

Davletbaeva I. M., Dulmaev S. E., Sazonov O. O., Gumerov A. M., Ibragimov R. G., Davletbaev R. S., Valiullin L. R. Polyurethanes based on modified amino ethers of boric acid. Polymer Science, Series B. 2020;62(4): 375–384. https://doi.org/10.1134/S156009042004003X

Nizamov A. A., Myasnikov G. V., Davletbaev R. S.,… Davletbaeva, I. M. Polyurethane gel electrolytes based on phthalic anhydride-modified amino ethers of ortho-phosphoric acid. Herald of Technological University. 2022;25(8): 121–125. (In Russ., abstract in Eng.). https://doi.org/10.55421/1998-7072_2022_25_8_121

Sazonov O. O., Zakirov I. N., Davletbaev R. S., Korobkina A. A., Sidorova M. I., Davletbaeva I. M. Thermal sensitive vapor permeable polyurethanes based on amino esters of ortho-phosphoric acid. Herald of Technological University. 2021;22(1): 37–40. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=44548999

Davletbaev R. S., Emelina O. Yu., Davletbaeva I. M., Gumerov A. M. Complexes of amino esters of boric acid as modifiers of polydimethylsiloxanes. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012;10: 120–122. (In Russ., abstract in Eng.). Available at:https://elibrary.ru/item.asp?id=17788724

Tokunov V. I., Kheifets I. B. Hydrophobic-emulsion drilling fluids*. Moscow: Nedra Publ. 1983. 167 p.

Drilling completion and workover fluids: Oil and gas technologies. 2008;11 (Appendix). 63 p. 34.

Case R. O., Tawney K. J., Jefwerth J. L. Quaternized MDEA complex esters with a high content of complex monoester mixed with quaternized complex ethers. Patent RF, no. 2006100036/04. Publ. 06.27.2006, bull. no. 18. (In Russ.) Available at: https://patents.google.com/patent/RU2006100036A/en

Kuznetsova N. A., Chaltseva T. V., Norkina R. N., ... Koroleva N. A. Negative photoresist for “explosive” photolithography. Patent RF, no. 2017103195. Publ. 22.03.2018, bull. no. 9. Available at: https://patents.google.com/patent/RU2648048C1/en

Lemaire P. C., Oldham C. J., Parsons G. N. Rapid visible color change and physical swelling during water exposure in triethanolamine-metalcone films formed by molecular layer deposition. Journal of Vacuum Science & Technology A: Vacuum. Surfaces. and Films. 2016;34(1): 01A134. https://doi.org/10.1116/1.4937222

Dutta S., Karak N. Synthesis. Characterization of poly(urethane amide) resins from nahar seed oil for surface coating applications. Progress in Organic Coatings. 2005;53(2): 147–152. https://doi.org/10.1016/ j.porgcoat.2005.02.003

Ashraf S. M., Ahmad S., Riaz U. Development of novel conducting composites of linseed-oil-based poly(urethane amide) with nanostructured poly(1-naphthylamine). Polymer International. 2007;56(9): 1173–1181. http://dx.doi.org/10.1002/pi.2265

Yadav S., Zafar F., Hasnat A., Ahmad S. Poly (urethane fatty amide) resin from linseed oil – a renewable resource. Progress in Organic Coatings. 2009;64(1): 27–32. https://doi.org/10.1016/j.porgcoat.2008.07.006

Lee C. S., Ooi. T. L., Chuah C. H., Ahmad S. Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides. Journal of the American Oil Chemists’ Society. 2007;84: 1161–1167. https://doi.org/10.1007/s11746-007-1150-5

Palanisamy A., Rao. B. S., Mehazabeen S. Diethanolamides of castor oil as polyols for the development of water-blown polyurethane foam. Journal of Polymers and the Environment. 2011;19: 698–705. https://doi.org/10.1007/s10924-011-0316-2

Shkop A., Tseitlin M., Shestopalov O. Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies. 2016;6(10 (84)): 35–40. https://doi.org/10.15587/1729-4061.2016.86085

Averkina E., Shakirova E., Butakova L. Influence of flocculant reagents on the parameters of clay suspensions. Earth Sciences and Subsoil Use. 2020;43(2); 230–241. https://doi.org/10.21285/2686-9993-2020-43-2-230-241

Published
2023-09-01
How to Cite
Vandyshev, D. Y., Sleptsova, O. V., Gazin, V. Y., Malyutin, S. A., Malkin, N. R., & Shikhaliev, K. S. (2023). Sedimentation of bentonite suspensions under the influence of low molecular weight polymers based on amino ester salts. Condensed Matter and Interphases, 25(3), 424-434. https://doi.org/10.17308/kcmf.2023.25/11391
Section
Original articles

Most read articles by the same author(s)