Sedimentation of bentonite suspensions under the influence of low molecular weight polymers based on amino ester salts
Abstract
Among the available technologies for treating natural and wastewater from clay materials, coagulation/flocculation is the most common method due to its high efficiency, simplicity, and cost-effectiveness. Inorganic coagulants such as aluminum sulfate and ferric chloride, widely used as destabilizing agents for colloidal particles, have several significant drawbacks: low efficiency and toxicity. Organic reagents of both natural and synthetic origin are a good alternative.
This work is devoted to the evaluation of the flocculation action of new reagents, which are low molecular weight polymers based on amino ester salts on clay suspensions, as well as the selection of their optimal concentration, providing the maximum sedimentation rate.
Studies have shown that amino ester salts can be effectively used for the treatment of water-clay suspensions. An important factor is the nature of the anion used, which has a significant influence on the oagulation ability of esters. Thus, 40–50 % (wt.) aqueous solutions of amino ester chlorides added to clay suspensions in an amount not exceeding 0.1% (vol.) can be used to thicken clay suspensions. At the same time, aqueous solutions of amino ester bromides regardless of the concentration, introduced into bentonite suspensions of 0.1–0.4 % (vol.), contribute to improved sedimentation, reducing viscosity, and increasing filtration capacity. These results allow us to recommend the use of amino ester chlorides as a
thickener in the preparation of drilling muds for strengthening the walls of wells during drilling, and bromides – for flocculation of bentonite suspensions in oil production
Downloads
References
Abu-Jdayil B. Rheology of sodium and calcium bentonite-water dispersions: Effect of electrolytes and aging time. International Journal of Mineral Processing. 2011;98(3-4): 208–213. https://doi.org/10.1016/j.minpro.2011.01.001
Karnland O. Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository. Stockholm: Clay Technology AB; Technical Report, SKB-TR-10-60, 2010. 25 p.
Duman O., Tunç S. Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Microporous Mesoporous Materials. 2009;117(1-2): 331–338. https://doi.org/10.1016/j.micromeso.2008.07.007
Tchobanoglous G., Burton F. L., Stensel H. D. Wastewater engineering: treatment and reuse. Metcalf & Eddy Inc., McGraw-Hill Education, Boston; 2003. 1819 p.
Shaikh S. M. R., Nasser M. S., Hussein I. A., Benamor A. Investigation of the effect of polyelectrolyte structure and type on the electrokinetics and flocculation behavior of bentonite dispersions. Chemical Engineering Journal. 2017;311: 265–276. https://doi.org/10.1016/j.cej.2016.11.098
Zhang B., Su H., Gu X., X. Huang. Wang H. Effect of structure and charge of polysaccharide flocculants on their flocculation performance for bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013;436: 443–449. https://doi.org/10.1016/j.colsurfa.2013.07.017
Carlson L. Bentonite Mineralogy. Working Report. POSIVA OY, Finland. 2004. 189 p.
Karimi L., Salem A. The role of bentonite particle size distribution on kinetic of cation exchange capacity. Journal of Industrial and Engineering Chemistry. 2011;17(1): 90–95. https://doi.org/10.1016/j.jiec.2010.12.002
Nasser M. S., Twaiq F. A., Onaizi S. A. Effect of polyelectrolytes on the degree of flocculation of papermaking suspensions. Separation and Purification Technology. 2013;103: 43–52. https://doi.org/10.1016/j.seppur.2012.10.024
Yousefi S. A., Nasser M. S., Hussein I. A., Benamor A., El-Naas M. H. Influence of polyelectrolyte structure and type on the degree of flocculation and rheological behavior of industrial MBR sludge. Separation and Purification Technology, 2020;233: 116001. https://doi.org/10.1016/j.seppur.2019.116001
Chatterjee T., Chatterjee S., Woo S. H. Enhanced coagulation of bentonite particles in water by a modified chitosan biopolymer. Chemical Engineering Journal. 2009;148(2-3): 414–419. https://doi.org/10.1016/j.cej.2008.09.016
Ghernaout D., Ghernaout B., Boucherit A. Effect of pH on electrocoagulation of bentonite suspensions in batch using iron electrodes. Journal of Dispersion Science and Technology. 2008;29(9): 1272–1275. https://doi.org/10.1080/01932690701857483
Hilal N., Ogunbiyi O. O., Al-Abri M. Neural network modeling for separation of bentonite in tubular ceramic membranes. Desalination. 2008;228(1-3): 175–182. https://doi.org/10.1016/j.desal.2007.10.006
Ju S., Weber M. E. Mujumdar A. S. Electroosmotic dewatering of bentonite suspensions. Separations Technology. 1991;1(4): 214–221. https://doi.org/10.1016/0956-9618(91)80016-s
Mahmoud A., Fernandez A., Chituchi T. M., Arlabosse P. Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: Analysis of the influence of the operating conditions using the response surface methodology. Chemosphere. 2008;72(11): 1765–1773. https://doi.org/10.1016/j.chemosphere.2008.04.075
Shaikh S. M. R., Nasser M. S., Magzoub M., Benamor A., Hussein I. A., El-Naas M. H. Qiblawey H. Effect of electrolytes on electrokinetics and flocculation behavior of bentonite-polyacrylamide dispersions. Applied Clay Science. 2018;158: 46–54. https://doi.org/10.1016/j.clay.2018.03.017
Shaikh S. M. R., Nasser M. S., Hussein I., Benamor A., Onaizi S. A., Qiblawey H. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review. Separation and Purification Technology. 2017;187: 137–161. https://doi.org/10.1016/j.seppur.2017.06.050
Lee C. S., Robinson J., Chong M. F. A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 2014;92(6): 489–508. https://doi.org/10.1016/j.psep.2014.04.010
Lin J. L., Huang C., Chin C. J. M., Pan J. R. Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms. Water Research. 2008;42(17): 4457–4466. https://doi.org/10.1016/j.watres.2008.07.043
Barbot E., Dussouillez P., Bottero J. Y., Moulin P. Coagulation of bentonite suspension by polyelectrolytes or ferric chloride: Floc breakage and reformation. Chemical Engineering Journal. 2010;156(1): 83–91. https://doi.org/10.1016/j.cej.2009.10.001
Daifa M., Shmoeli E., Domb A. J. Enhanced flocculation activity of polyacrylamide-based flocculant for purification of industrial wastewater. Polymers for Advanced Technologies. 2019;30: 2636–2646. https://doi.org/10.1002/pat.4730
Ma J., Shi J., Ding L., … Fu K. Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation. Separation and Purification Technology. 2018;197: 407–417. https://doi.org/10.1016/j.seppur.2018.01.036
Liu T., Ding E., Xue F. Polyacrylamide and poly(N.N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. International Journal of Biological Macromolecules. 2017;103: 1107–1112. https://doi.org/10.1016/j.ijbiomac.2017.05.098
Nasser M. S., James A. E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Separation and Purification Technology. 2006;52: 241–252. https://doi.org/10.1016/j.seppur.2006.04.005
Smith E. L., Abbott A. P., Ryder K. S. Deep eutectic solvents (DESs) and their 186 applications. Chemical Reviews. 2014;114(21): 11060–11082. https://doi.org/10.1021/cr300162p
Zhang Q., De Oliveira Vigier K., Royer S., Jérôme F. Deep eutectic solvents: Syntheses. properties and applications. Chemical Society Reviews. 2012;41(21): 7108–7146. https://doi.org/10.1039/c2cs35178a
Shomurodov A., Makhsumov A., Ismailov B., Obidov S. B. N-diethanoloiloamino-(butin-2-il)-sorbinate and its physico-chemical properties. Universum: Chemistry & Biology. 2021;6(84): 20–24. (In Russ., abstract in Eng.). https://doi.org/10.32743/UniChem.2021.84.6.11856
Davletbaeva I. M., Dulmaev S. E., Sazonov O. O., Gumerov A. M., Ibragimov R. G., Davletbaev R. S., Valiullin L. R. Polyurethanes based on modified amino ethers of boric acid. Polymer Science, Series B. 2020;62(4): 375–384. https://doi.org/10.1134/S156009042004003X
Nizamov A. A., Myasnikov G. V., Davletbaev R. S.,… Davletbaeva, I. M. Polyurethane gel electrolytes based on phthalic anhydride-modified amino ethers of ortho-phosphoric acid. Herald of Technological University. 2022;25(8): 121–125. (In Russ., abstract in Eng.). https://doi.org/10.55421/1998-7072_2022_25_8_121
Sazonov O. O., Zakirov I. N., Davletbaev R. S., Korobkina A. A., Sidorova M. I., Davletbaeva I. M. Thermal sensitive vapor permeable polyurethanes based on amino esters of ortho-phosphoric acid. Herald of Technological University. 2021;22(1): 37–40. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=44548999
Davletbaev R. S., Emelina O. Yu., Davletbaeva I. M., Gumerov A. M. Complexes of amino esters of boric acid as modifiers of polydimethylsiloxanes. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012;10: 120–122. (In Russ., abstract in Eng.). Available at:https://elibrary.ru/item.asp?id=17788724
Tokunov V. I., Kheifets I. B. Hydrophobic-emulsion drilling fluids*. Moscow: Nedra Publ. 1983. 167 p.
Drilling completion and workover fluids: Oil and gas technologies. 2008;11 (Appendix). 63 p. 34.
Case R. O., Tawney K. J., Jefwerth J. L. Quaternized MDEA complex esters with a high content of complex monoester mixed with quaternized complex ethers. Patent RF, no. 2006100036/04. Publ. 06.27.2006, bull. no. 18. (In Russ.) Available at: https://patents.google.com/patent/RU2006100036A/en
Kuznetsova N. A., Chaltseva T. V., Norkina R. N., ... Koroleva N. A. Negative photoresist for “explosive” photolithography. Patent RF, no. 2017103195. Publ. 22.03.2018, bull. no. 9. Available at: https://patents.google.com/patent/RU2648048C1/en
Lemaire P. C., Oldham C. J., Parsons G. N. Rapid visible color change and physical swelling during water exposure in triethanolamine-metalcone films formed by molecular layer deposition. Journal of Vacuum Science & Technology A: Vacuum. Surfaces. and Films. 2016;34(1): 01A134. https://doi.org/10.1116/1.4937222
Dutta S., Karak N. Synthesis. Characterization of poly(urethane amide) resins from nahar seed oil for surface coating applications. Progress in Organic Coatings. 2005;53(2): 147–152. https://doi.org/10.1016/ j.porgcoat.2005.02.003
Ashraf S. M., Ahmad S., Riaz U. Development of novel conducting composites of linseed-oil-based poly(urethane amide) with nanostructured poly(1-naphthylamine). Polymer International. 2007;56(9): 1173–1181. http://dx.doi.org/10.1002/pi.2265
Yadav S., Zafar F., Hasnat A., Ahmad S. Poly (urethane fatty amide) resin from linseed oil – a renewable resource. Progress in Organic Coatings. 2009;64(1): 27–32. https://doi.org/10.1016/j.porgcoat.2008.07.006
Lee C. S., Ooi. T. L., Chuah C. H., Ahmad S. Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides. Journal of the American Oil Chemists’ Society. 2007;84: 1161–1167. https://doi.org/10.1007/s11746-007-1150-5
Palanisamy A., Rao. B. S., Mehazabeen S. Diethanolamides of castor oil as polyols for the development of water-blown polyurethane foam. Journal of Polymers and the Environment. 2011;19: 698–705. https://doi.org/10.1007/s10924-011-0316-2
Shkop A., Tseitlin M., Shestopalov O. Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies. 2016;6(10 (84)): 35–40. https://doi.org/10.15587/1729-4061.2016.86085
Averkina E., Shakirova E., Butakova L. Influence of flocculant reagents on the parameters of clay suspensions. Earth Sciences and Subsoil Use. 2020;43(2); 230–241. https://doi.org/10.21285/2686-9993-2020-43-2-230-241
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.