Modeling of Desloratadine release process from alloys with Polyethylene glycol-6000 by Molecular dynamics method
Abstract
Purpose: Desloratadine is a drug with proven antihistaminic activity, is currently presented on the pharmaceutical market only in dosage forms: tablets, solution and syrup. A significant factor limiting the development of new drugs of desloratadine is its low solubility in water. The actual direction of pharmaceutical technology in this regard is research on creation of dosage forms of desloratadine, aimed at increasing its water solubility. Currently, a promising direction in pharmaceutical technology in the development of drug composition is the use of computer modeling. The use of molecular dynamics
modeling method is very relevant in the development of solid dispersions of drugs. The aim of this study was to carry out molecular dynamics modeling of desloratadine release from alloys with polyethylene glycol-6000 (desloratadine: polymer ratio 1:1, 1:2, 1:5) into the dissolution medium.
Experimental: modeling of desloratadine release from alloys with polyethylene glycol-6000 was carried out by molecular dynamics method (Gromacs 2023 program, Amber 99 force field). The van der Waals interaction energies of desloratadine with polyethylene glycol-6000 and with water were calculated; the fraction of desloratadine molecules that lost the bond with polyethylene glycol-6000. It was found that the average energy of interaction of desloratadine with polyethylene glycol -6000 and with water. Polyethylene glycol-6000 decreases as the content of desloratadine in the alloy decreases. Desloratadine in the alloy, while the interaction energy with water increases.
Conclusions: The studies on the release rate of desloratadine from alloys with polyethylene glycol-6000 by molecular dynamics method showed that the highest release rate of desloratadine was achieved at 1:1 (5.47±1.11 %), 1:2 (5.39±0.51 %) ratios and the lowest at 1:5 (3.03 ± 0.00 %). The obtained results indicate the promising use of solid dispersions “desloratadine – polyethylene glycol-6000” (1:1 ratio)
Downloads
References
Popović G., Čakar M., Agbaba D. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media. Journal of Pharmaceutical and Biomedical Analysis. 2009;49: 42–47. https://doi.org/10.1016/j.jpba.2008.09.043
DuBuske L. M. Review of desloratadine for the treatment of allergic rhinitis, chronic idiopathic urticaria and allergic inflammatory disorders. Expert Opinion on Pharmacotherapy. 2005;6: 2511–2523. https://doi.org/10.1517/14656566.6.14.2511
State Pharmacopoeia of the Russian Federation XV [Electronic edition]. (In Russ.). Available at: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/
Kolašinac N., Kachrimanis K., Homšek I., Grujić B., Ðurić Z., Ibrić S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. International Journal of Pharmaceutics. 2012;436(1-2): 161–70. https://doi.org/10.1016/j.ijpharm.2012.06.060
Vasconcelos T., Marques S., das Neves J., Sarmento B. Amorphous solid dispersions: rational selection of a manufacturing process. Advanced Drug Delivery Reviews. 2016; 100:85–101. https://doi.org/10.1016/j.addr.2016.01.012
Douroumis J. A., Zeitler S. Q. An investigation into the formations of the internal microstructures of solid dispersions prepared by hot melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics. 2020;155: 147–161 https://doi.org/10.1016/j.ejpb.2020.08.018
Barea S. A., Mattos C. B., Cruz A. C., … Koester L. S. Solid dispersions enhance solubility, dissolution, and permeability of thalidomide. Drug Development and Industrial Pharmacy. 2017;43(3): 511–518. https://doi.org/10.1080/03639045.2016.1268152
Zhai X., Li C., Lenon G. B., Xue C. C. L., Li W. Preparation and characterisation of solid dispersions of tanshinone IIA, cryptotanshinone and total tanshinones. Asian Journal of Pharmaceutical Sciences. 2017;12(1): 85–97. https://doi.org/10.1016/j.ajps.2016.08.004
Bolourchian N., Mahboobian M. M., Dadashzadeh S. The effect of PEG molecular weights on dissolution ehavior of simvastatin in solid dispersions. Iranian Journal of Pharmaceutical Research. 2013;12: 11–20.
Dos Santos K. M., Barbosa R. M., Vargas F. G. A., … Raffin F. N. Development of solid dispersions of β-apachone
in PEG and PVP by solvent evaporation method. Drug Development and Industrial Pharmacy. 2018;44(5): 750–756. https://doi.org/10.1080/03639045.2017.1411942
Polkovnikova Yu. A., Glizhova T. N., Arutyunova N. V., Sokulskaya N. N. PEG–4000 Increases solubility and dissolution rate of vinpocetin in solid dispersion system Chimica Techno Acta. 2022;9(S): 202292S11. https://doi.org/10.15826/chimtech.2022.9.2.S11
Leonardi D., Barrera M. G., Lamas M. C., Salomón C. J. Development of prednisone: polyethylene glycol 6000 fast-release tablets from solid dispersions: solid-state characterization, dissolution behavior, and formulation parameters. AAPS PharmSciTech. 2007;8(4):E108. https://doi.org/10.1208/pt0804108
Fatmi S., Bournine L., Iguer-Ouada M., Lahiani-Skiba M., Bouchal F., Skiba M. Amorphous solid dispersion studies of camptothecin-cyclodextrin inclusion complexes in PEG 6000. Acta Poloniae Pharmaceutica – Drug Research. 2015;72(1): 179-192.
Febriyenti F., Rahmi S., Halim A. Study of gliclazide solid dispersion systems using PVP K-30 and PEG 6000 by solvent method. Journal of Pharmacy And Bioallied Sciences. 2019;11(3): 262–267. https://doi.org/10.4103/jpbs.JPBS_87_18
Polkovnikova Yu. A., Slivkin A. I., Belenova A. S. Modeling the process of vinpocetine release from an alloy with EG-6000 using the molecular dynamics method. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2022; 4: 144–148. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=49963564
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2: 19–25. https://doi.org/10.1016/j.softx.2015.06.001
Han R., Huang T., Liu X., … Ouyang D. Insight into the dissolution molecular mechanism of ternary solid dispersions by combined experiments and molecular Ssimulations. AAPS PharmSciTech. 2019;20(7): 274. https://doi.org/10.1208/s12249-019-1486-9
Sorin E. J., Pande V. S. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophysical Journal. 2005;88(4): 2472–2493. https://doi.org/10.1529/biophysj.104.051938
Shirts M. R., Klein C., Swails J. M., … Zhong E. D. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. Journal of Computer-Aided Molecular Design. 2017;31: 147–161. https://doi.org/10.1007/s10822-016-9977-1
Braga C., Travis K. P. A configurational temperature Nosé-Hoover thermostat. The Journal of Chemical Physics. 2005;123(13): 134101. https://doi.org/10.1063/1.2013227
Shirts M. R., Klein C., Swails J. M., … Zhong E. D. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. Journal of Computer-Aided Molecular Design. 2017;31: 147–161. https://doi.org/10.1007/s10822-016-9977-1
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.