Research on the influence of the powder stoichiometry of (AgxCu1-x)0.7GaSe2 on the phase composition, structure, and lifetime of photogenerated charge carriers

  • Vladimir V. Rakitin Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation https://orcid.org/0000-0001-6582-5212
  • Mikhail V. Gapanovich Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation; Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation; Moscow Center for Advanced Studies 20, Kulakova st., Moscow, Russian Federation https://orcid.org/0000-0002-9109-6532
  • Evgenia V. Rabenok Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation https://orcid.org/0000-0002-3500-6918
  • Dana R. Kalimullina Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation
  • Denis S. Lutsenko Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation; Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation
  • Ivan D. Kulemetev Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation
  • Elizar N. Koltsov Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation; Moscow Center for Advanced Studies 20, Kulakova st., Moscow, Russian Federation
  • Alena V. Stanchik Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 Petrusya Brovki st., Minsk 220072, Republic of Belarus https://orcid.org/0000-0001-8222-8030
  • Valery F. Gremenok Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 Petrusya Brovki st., Minsk 220072, Republic of Belarus https://orcid.org/0000-0002-3442-5299
Keywords: Chalcopyrite powders, Copper quaternary compounds, Photoactive cathodes, Hydrogen generation

Abstract

Purpose: This work presents a series of (AgxCu1-x)0.7GaSe2 (0 ≤ x ≤ 1) powders synthesized via a solid-state reaction using the presynthesized ternary compounds Cu0.7GaSe2, Ag0.7GaSe2 and Ag0.7GaSe2.

Experimental: A combination of X-ray diffraction (XRD) and Raman spectroscopy was used to establish that the solid solution region in this system is narrow and lies within the range of 0.8 ≤ x < 1.

Conclusions: An investigation of low-temperature luminescence spectra and microwave photoconductivity decay kinetics revealed that single-phase samples exhibit increased lifetimes of photogenerated charge carriers. This is attributed to the replacement of deep charge carrier traps, such as selenium vacancies VSe, with shallower cationic copper vacancies associated with VCu and VSe-VCu

Downloads

Download data is not yet available.

Author Biographies

Vladimir V. Rakitin, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation

Cand. Sci. (Chem.), Senior Researcher,
Group of Semiconductor and Composite Materials, Federal
Research Center for Problems of Chemical Physics and
Medicinal Chemistry, RAS (Chernogolovka, Moscow Region,
Russian Federation)

Mikhail V. Gapanovich, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation; Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation; Moscow Center for Advanced Studies 20, Kulakova st., Moscow, Russian Federation

Cand. Sci. (Chem.), Head of
Group, Group of Semiconductor and Composite Materials,
Federal Research Center for Problems of Chemical Physics
and Medicinal Chemistry, RAS (Chernogolovka, Moscow
Region, Russian Federation)

Evgenia V. Rabenok, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation

Cand. Sci. (Phys.-Math.), Senior
Researcher, Group of Semiconductor and Composite
Materials, Federal Research Center for Problems of Chemical
Physics and Medicinal Chemistry, RAS (Chernogolovka,
Moscow Region, Russian Federation)

Dana R. Kalimullina, Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation

6th year student, Faculty of Physics, Lomonosov Moscow State University (Moscow, Russian Federation)

Denis S. Lutsenko, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation; Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation

Junior Researcher, Group of Semiconductor and Composite Materials, Federal Research
Center for Problems of Chemical Physics and Medicinal Chemistry, RAS (Moscow, Russian Federation)

Ivan D. Kulemetev, Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation

5th year student, Faculty of Physics, Lomonosov Moscow State University (Moscow, Russian Federation)

Elizar N. Koltsov, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov av., 1, Chernogolovka, Moscow Region 142432, Russian Federation; Moscow Center for Advanced Studies 20, Kulakova st., Moscow, Russian Federation

3rd year postgraduate student, MIPT,
Engineer, Group of Semiconductor and Composite Materials,
Federal Research Center for Problems of Chemical Physics
and Medicinal Chemistry, RAS (Dolgoprudny, Chernogolovka,
Moscow Region, Russian Federation)

Alena V. Stanchik, Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 Petrusya Brovki st., Minsk 220072, Republic of Belarus

Cand. Sci. (Phys.-Math.), Associate
Professor, Senior Researcher, Laboratory of Semiconductor
Physics, Scientific-Practical Materials Research Centre,
National Academy of Sciences of Belarus (Minsk, Republic
of Belarus)

Valery F. Gremenok, Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 19 Petrusya Brovki st., Minsk 220072, Republic of Belarus

D.Sci. (Phys.-Math.), Professor, Head
of Laboratory of Semiconductor Physics, Scientific-Practical
Materials Research Centre, National Academy of Sciences of
Belarus (Minsk, Republic of Belarus)

References

Turner J. A. Sustainable hydrogen production. Science. 2004;305(5686): 972-4. https://doi.org/10.1126/science.1103197

Chiu Y. H., Lai T. H., Kuo M. Y., Hsieh P. Y., Hsu Y. J. Photoelectrochemical cells for solar hydrogen production: Challenges and opportunities. APL Materials. 2019;7(8). https://doi.org/10.1063/1.5109785

Yokoyama D., Minegishi T., Maeda K., ... Domen K. Photoelectrochemical water splitting using a Cu(In, Ga)Se2 thin film. Electrochemistry Communications. 2010;12(6): 851–853. https://doi.org/10.1016/j.elecom.2010.04.004

Barreto L., Makihira A., Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy. 2003;28(3): 267–284. https://doi.org/10.1016/S0360-3199(02)00074-5

Chen Y., Feng X., Liu M., Su J., Shen S. Towards efficient solar-to-hydrogen conversion: fundamentals and recent progress in copper-based chalcogenide photocathodes. Nanophotonics. 2016;5(4): 524–547. https://doi.org/10.1515/nanoph-2016-0027

Zhang L., Minegishi T., Kubota J., Domen K. Hydrogen evolution from water using AgxCu1– xGaSe2 photocathodes under visible light. Physical Chemistry Chemical Physics. 2014;16(13): 6167–6174. https://doi.org/10.1039/c3cp54590c

Valderrama R. C., Sebastian P. J., Enriquez J. P., Gamboa S. A. Photoelectrochemical characterization of CIGS thin films for hydrogen production. Solar Energy Materials and Solar Cells. 2005;88(2): 145–155. https://doi.org/10.1016/j.solmat.2004.10.011

Marsen B., Dorn S., Cole B., Rocheleau R. E., Miller E. L. Copper chalcopyrite film photocathodes for direct solarpowered water splitting. MRS Online Proceedings Library (OPL). 2006;974: 0974-CC09. https://doi.org/10.1557/PROC-0974-CC09-05

Jacobsson T. J., Platzer-Björkman C., Edoff M., Edvinsson T. CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation. International Journal of Hydrogen Energy. 2013;38(35): 15027–15035. https://doi.org/10.1016/j.ijhydene.2013.09.094

Conibeer G., Willoughby A. (eds.). Solar cell materials: developing technologies. John Wiley & Sons; 2014. 344 p. https://doi.org/10.1002/9781118695784

Rudmann D., Brémaud D., Zogg H., Tiwari A. N. Na incorporation into Cu(In, Ga)Se2 for high-efficiency flexible solar cells on polymer foils. Journal of Applied Physics. 2005;97(8). https://doi.org/10.1063/1.1857059

Ikeda S., Fujita W., Katsube R., … Yoshino K. Crystalline-face-dependent photoelectrochemical properties of single crystalline CuGaSe2 photocathodes for hydrogen evolution under sunlight radiation. Electrochimica Acta. 2023;454: 142384. https://doi.org/10.1016/j.electacta.2023.142384

Mahmoudi B., Caddeo F., Lindenberg T., … Maijenburg A. W. Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5. Electrochimica Acta. 2021;367: 137183. https://doi.org/10.1016/j.electacta.2020.137183

Rabenok E. V., Gapanovich M. V. Study of the decay kinetics of photogenerated current carriers in Ag1−xCuxGaSe2 solid solutions. High Energy Chemistry. 2023;57(2): 174–175. https://doi.org/10.1134/S0018143923020108

Rakitin V. V., Gapanovich M. V., Lutsenko D. S., … Kabyliatski A. V. Studying the effect of composition on the crystal structure, optical properties, and photogenerated current carriers lifetimes in AgxCu1–xGaSe2 (0 ≤ x ≤ 1) solid solutions. High Energy Chemistry. 2024;58(5): 492-498. https://doi.org/10.1134/S0018143924700474

Novikov G. F., Marinin A. A., Rabenok E. V. Microwave measurements of the pulsed photoconductivity and photoelectric effect. Instruments and Experimental Techniques. 2010; 53(2): 233–239. https://doi.org/10.1134/S0020441210020144

Barman B., Handique K. C., Kalita P. K. Observation of negative differential resistance (NDR) in chemically synthesized CuGaSe2 nanorods. Materials Letters. 2024;357: 135638. https://doi.org/10.1016/j.matlet.2023.135638

Swamy H. G., Naidu B. S., Reddy P.J. Structure and optical properties of CuGaSe2 thin films. Vacuum. 1990; 41(4-6): 1445–1447. https://doi.org/10.1016/0042-207X(90)93985-R

Karaagac H., Parlak M. Effects of annealing on structural and morphological properties of e-beam evaporated AgGaSe2 thin films. Applied Surface Science. 2009;255(11): 5999–6006. https://doi.org/10.1016/j.apsusc.2009.01.054

Karaagac H., Parlak M. Deposition and characterization of layer-by-layer sputtered AgGaSe2 thin films. Applied Surface Science. 2011;257(13): 5731–5738. https://doi.org/10.1016/j.apsusc.2011.01.087

Isik M., Gasanly N. M. Investigation of structural and optical characteristics of thermally evaporated Ga2Se3 thin films. Vacuum. 2020;179: 109501. https://doi.org/10.1016/j.vacuum.2020.109501

Isik M., Sarigul N., Gasanly N. M. Thermoluminescence characteristics of GaSe and Ga2Se3 single crystals. Journal of Luminescence. 2022;246: 118846. https://doi.org/10.1016/j.jlumin.2022.118846

Theodoropoulou S., Papadimitriou D., Doka S., Schedel-Niedrig T., Lux-Steiner M. C. Structural properties of Ge oped CuGaSe2 films studied by Raman and photoluminescence spectroscopy. Thin Solid Films. 2007; 515(15): 5904–5908. https://doi.org/10.1016/j.tsf.2006.12.163

Cui Y., Roy U. N., Bhattacharya P., Parker A., Burger A., Goldstein J. T. Raman spectroscopy study of AgGaSe2, AgGa0.9In0.1Se2, and AgGa0.8In0.2Se2 crystals. Solid State Communications. 2010;150(35-36): 1686–1689. https://doi.org/10.1016/j.ssc.2010.06.022

Boyle J. H., McCandless B. E., Shafarman W. N., Birkmire R. W. Structural and optical properties of (Ag, Cu) (In, Ga)Se2 polycrystalline thin film alloys. Journal of Applied Physics. 201;115(22). https://doi.org/10.1063/1.4880243

Nigge K. M., Baumgartner F. P., Bucher E. CVT-growth of AgGaSe2 single crystals: electrical and photoluminescence properties. Solar Energy Materials and Solar Cells. 1996;43(4): 335–343. https://doi.org/10.1016/0927-0248(96)00007-4

Artus L., Bertrand Y. Anomalous temperature dependence of fundamental gap of AgGaS2 and AgGaSe2 chalcopyrite compounds. Solid State Communications. 1987;61(11): 733–736. https://doi.org/10.1016/0038-1098(87)90727-7

Weiss T., Birkholz M., Saad M., … Lux-Steiner M. C. Ag-doped CuGaSe2 as a precursor for thin film solar cells. Journal of Crystal Growth. 1999;198: 1190–1195. https://doi.org/10.1016/S0022-0248(98)01152-X

Schön J. H., Riazi-Nejad H., Kloc C., Baumgartner F. P., Bucher E. Photoluminescence properties of doped-and undoped-CuGaSe2 single crystals. Journal of Luminescence. 1997;72: 118–120. https://doi.org/10.1016/S0022-2313(96)00385-7

Published
2025-09-25
How to Cite
Rakitin, V. V., Gapanovich, M. V., Rabenok, E. V., Kalimullina, D. R., Lutsenko, D. S., Kulemetev, I. D., Koltsov, E. N., Stanchik, A. V., & Gremenok, V. F. (2025). Research on the influence of the powder stoichiometry of (AgxCu1-x)0.7GaSe2 on the phase composition, structure, and lifetime of photogenerated charge carriers. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(3), 441-453. https://doi.org/10.17308/kcmf.2025.27/13020
Section
Original articles