ИК-синхротронная нановизуализация биомиметического слоя на основе триметилдигидрохинолина и нанокристаллического гидроксиапатита
Аннотация
Цель статьи: В работе представлены результаты исследований биомиметического органоминерального слоя на основе триметилдигидрохинолина, полимеризованного в присутствии нанокристаллического карбонатзамещённого нестехиометрического гидроксиапатита.
Экспериментальная часть: Визуализация особенностей морфологии биомиметического слоя реализована с использованием метода синхротронной инфракрасной спектроскопии ближнего поля.
Выводы: Показано, что сформированный на поверхности зубной эмали биомиметический слой имеет морфологическую структуру однородно распределенной и плотноупакованной композиционной плёнки поли 2,2,4-триметил-1,2-дигидрохинолин-6,7-диол/н-кГАп. При этом сформированное томатологическое покрытие на основе полидигидроксихинолина и нанокристаллического гидроксиапатита имеет коэффициент твердости по Виккерсу близкий к тому, который характерен для здоровой эмали
Скачивания
Литература
Setlur A. S., Karunakaran C., Anusha V., … Kusanur R. Investigating the molecular interactions of quinoline derivatives for antibacterial activity against bacillus subtilis: computational biology and in vitro study interpretations. Molecular Biotechnology. 2024;66: 3252–3273. https://doi.org/10.1007/s12033-023-00933-6
Wang R., Cao Y., Jia D., Liu L., Li F. New approach to synthesize 8-hydroxyquinoline-based complexes with Zn2+ and their luminescent properties. Optical Materials. 2013;36: 232–237. https://doi.org/10.1016/j.optmat.2013.08.032
Abeydeera N., Benin B. M., Mudarmah K., … Huang S. D. Harnessing the dual antimicrobial mechanism of action with Fe(8-Hydroxyquinoline)3 to develop a topical ointment for mupirocin-resistant MRSA infections. Antibiotics. 2023;12: 886. https://doi.org/10.3390/antibiotics12050886
Nowicki J., Jaroszewska K., Nowakowska-Bogdan E., Szmatoła M., Iłowska J. Synthesis of 2,2,4-trimethyl-1,2-H-dihydroquinoline (TMQ) over selected organosulfonic acid silica catalysts: selectivity aspects. Molecular Catalysis. 2018;454: 94–103. https://doi.org/10.1016/j.mcat.2018.05.016
Kumar G., Sathe A., Krishna V. S., Sriram D., Jachak S. M. Synthesis and biological evaluation of ihydroquinoline carboxamide derivatives as anti-tubercular agents. European Journal of Medicinal Chemistry. 2018;157: 1–13. https://doi.org/10.1016/j.ejmech.2018.07.046
Ball V. Composite materials and films based on melanins, polydopamine, and other catecholamine-based materials. Biomimetics. 2017;2: 12. https://doi.org/10.3390/biomimetics2030012
Seredin P., Goloshchapov D., Emelyanova A., ... Mahdy I. A. Rapid deposition of the biomimetic hydroxyapatite-polydopamine-amino acid composite layers onto the natural enamel. ACS Omega. 2024. https://doi.org/10.1021/acsomega.3c08491
Kaushik N., Nhat Nguyen L., Kim J. H., Choi E. H., Kumar Kaushik N. Strategies for using polydopamine to induce biomineralization of hydroxyapatite on implant materials for bone tissue engineering. International Journal of Molecular Sciences. 2020;21(18): 6544. https://doi.org/10.3390/ijms21186544
Seredin P., Goloshchapov D., Kashkarov V., ... Prutskij T. Biomimetic mineralization of tooth enamel using nanocrystalline hydroxyapatite under various dental surface pretreatment conditions. Biomimetics. 2022;7(3): 111. https://doi.org/10.3390/biomimetics7030111
Teaford M. F., Smith M. M., Ferguson M. W. J. Development, function and evolution of teeth. Cambridge University Press; 2007.
Freitas R. O., Cernescu A., Engdahl A., … Klementieva O. Nano-infrared imaging of primary neurons. Cells. 2021;10: 2559. https://doi.org/10.3390/cells10102559
Amarie S., Zaslansky P., Kajihara Y., Griesshaber E., Schmahl W. W., Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein Journal of Nanotechnology. 2012;3: 312–323. https://doi.org/10.3762/bjnano.3.35
Seredin P., Goloshchapov D., Peshkov Y., … Freitas R. O. Identification of chemical transformations in enamel apatite during the development of fissure caries at the nanoscale by means of synchrotron infrared nanospectroscopy: a pilot study. Nano-Structures; Nano-Objects. 2024;38: 101205. https://doi.org/10.1016/j.nanoso.2024.101205
López E. O., Rossi A. L., Bernardo P. L., Freitas R. O., Mello A., Rossi A. M. Multiscale connections between morphology and chemistry in crystalline, zinc-substituted hydroxyapatite nanofilms designed for biomedical applications. Ceramics International. 2019;45: 793–804. https://doi.org/10.1016/j.ceramint.2018.09.246
Seredin P., Goloshchapov D., Kashkarov V., … Prutskij T. Development of a visualisation approach for analysing ncipient and clinically unrecorded enamel fissure caries using laser-induced contrast imaging, micro-Raman spectroscopy and biomimetic composites: a pilot study. Journal of Imaging. 2022;8: 137. https://doi.org/10.3390/jimaging8050137
Goloshchapov D. L., Kashkarov V. M., Ippolitov Y. A.; Prutskij T., Seredin P. V. Early screening of dentin caries using the methods of micro-Raman and laser-induced fluorescence spectroscopy. Results in Physics. 2018;10: 346–347. https://doi.org/10.1016/j.rinp.2018.06.040
Seredin P., Goloshchapov D., Prutskij T., Ippolitov Y. Phase transformations in a human tooth tissue at the initial stage of caries. PLoS ONE. 2015;10: e0124008. https://doi.org/10.1371/journal.pone.0124008
Goloshchapov D., Buylov N., Emelyanova A., …Seredin P. Raman and XANES spectroscopic study of the influence of coordination atomic and molecular environments in biomimetic composite materials integrated with ental tissue. Nanomaterials. 2021;11: 3099. https://doi.org/10.3390/nano11113099
Goloshchapov D. L., Minakov D. A., Domashevskaya E. P., Seredin P. V. Excitation of luminescence of the nanoporous bioactive nanocrystalline carbonate-substituted hydroxyapatite for early tooth disease detection. Results in Physics. 2017;7: 3853–3858. https://doi.org/10.1016/j.rinp.2017.09.055
Goloshchapov D. L., Lenshin A. S., Savchenko D. V., Seredin P. V. Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites. Results in Physics. 2019;13: 102158. https://doi.org/10.1016/j.rinp.2019.102158
Nakayama M., Kajiyama S., Kumamoto A., … Kato T. Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nature Communications. 2018;9: 568. https://doi.org/10.1038/s41467-018-02932-7
Ocelic N., Huber A., Hillenbrand R. Pseudoheterodyne detection for background-free near-field spectroscopy. Applied Physics Letters. 2006;89: 101124. https://doi.org/10.1063/1.2348781
Keilmann F., Hillenbrand R. Near-field microscopy by elastic light scattering from a tip. Philosophical fransactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2004;362: 787–805. https://doi.org/10.1098/rsta.2003.1347
Beniash E., Stifler C. A., Sun C.-Y., … Gilbert P. U. P. A. The hidden structure of human enamel. Nature Communications. 2019;10: 4383. https://doi.org/10.1038/s41467-019-12185-7
Free R., DeRocher K., Cooley V., Xu R., Stock S. R., Joester D. Mesoscale structural gradients in human tooth enamel. Proceedings of the National Academy of Sciences. 2022;119: e2211285119. https://doi.org/10.1073/pnas.2211285119
Besnard C., Marie A., Sasidharan S., … Korsunsky A. M. Synchrotron X-ray studies of the structural and functional hierarchies in mineralised human dental enamel: a state-of-the-art review. Dentistry Journal. 2023;11: 98. https://doi.org/10.3390/dj11040098
Huth F., Govyadinov A., Amarie S., Nuansing W., Keilmann F., Hillenbrand R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters. 2012;12: 3973–3978. https://doi.org/10.1021/nl301159v
Mester L., Govyadinov A. A., Chen S., Goikoetxea M., Hillenbrand R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nature Communications. 2020;11: 3359. https://doi.org/10.1038/s41467-020-17034-6
Freitas R. O., Deneke C., Maia F. C. B., … Westfahl H. Low-aberration beamline optics for synchrotron infrared nanospectroscopy. Optics Express. 2018;26: 11238. https://doi.org/10.1364/OE.26.011238
Muller E. A., Pollard B., Bechtel H. A., Van Blerkom P., Raschke M. B. Infrared vibrational nanocrystallography and nanoimaging. Science Advances. 2016;2: e1601006. https://doi.org/10.1126/sciadv.1601006
Matsuya T., Otsuka Y., Tagaya M., Motozuka S., Ohnuma K., Mutoh Y. Formation of stacked luminescent complex of 8-hydroxyquinoline molecules on hydroxyapatite coating by using cold isostatic pressing. Materials Science and Engineering: C. 2016;58: 127–132, https://doi.org/10.1016/j.msec.2015.08.020
Chuenarrom C., Benjakul P., Daosodsai P. Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Materials Research. 2009;12: 473–476. https://doi.org/10.1590/S1516-14392009000400016
Copyright (c) 2025 Конденсированные среды и межфазные границы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.





