Phase composition and texture of palladium (II) oxide thin films on SiO2/Si
Abstract
The objects of the study are nanostructures based on palladium (II) oxide of various elemental compositions and morphological organization.
The aim of the work is to establish the influence of synthesis conditions on the phase composition and texture of thin films of palladium (II) oxide synthesized by oxidation in an oxygen atmosphere of initial ultrafine layers of metallic palladium of various thicknesses on SiO2/Si(100) substrates.
Conclusions: It has been established that the oxidation of the initial ultrafine layers of metallic palladium with thicknesses of ~ 95, ~ 190, and ~ 290 nm in an oxygen atmosphere in the temperature range Tox = 873 - 1123 K leads to the formation of homogeneous polycrystalline films of palladium (II) oxide on SiO2/Si (100) substrates. It is shown that the surface layers of PdO/SiO2/Si (100) films have a pronounced texture (001), the degree of which increases with increasing oxidation temperature.
Downloads
References
Korotcenkov G., Brinzar, V., Cho B. K. In2O3- and SnO2-based thin film ozone sensors: fundamentals. Journal of Sensors. 2016;2016: 1-31. https://doi.org/10.1155/2016/3816094
Oros C., Horprathumb M., Wisitsoraat A., … Chindaudom P. Ultra-sensitive NO2 sensor based on vertically aligned SnO2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. Sensors and Actuators B. 2016;223: 936–945. https://doi.org/10.1016/j.snb.2015.09.104
Stanoiu A., Somacescu S., Calderon-Moreno J. M., … Simion C. E. Low level NO2 detection under humid background and associated sensing mechanism for mesoporous SnO2. Sensors and Actuators B. 2016;231: 166–174. https://doi.org/10.1016/j.snb.2016.02.137
Jiao M., Chien N. V., Duy N. V., … Nguyen H. On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor. Materials Letters. 2016; 169: 231–235. https://doi.org/10.1016/j.matlet.2016.01.123
Katoch A., Sun G.–J., Choi S., Byun J., Kim S. S. Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sensors and Actuators B: Chemical. 2013;185: 411–416. https://doi.org/10.1016/j.snb.2013.05.030
Ilin A., Martyshov M., Forsh E., … Kashkarov P. UV effect on NO2 sensing properties of nanocrystalline In2O3. Sensors and Actuators B: Chemical. 2016;231: 491–496. https://doi.org/10.1016/j.snb.2016.03.051
Navale S. T., Tehare K. K., Shaikh S. F., … Mane R. S. Hexamethylenetetramine-mediated TiO2 films: facile chemical synthesis strategy and their use in nitrogen dioxide detection. Materials Letters. 2016;173: 9–12. https://doi.org/10.1016/j.matlet.2016.02.140
Kim H.-J., Lee J.-H. Highly sensitive and selective gas sensors using p- type oxide semiconductors: overview. Sensors and Actuators B: Chemical. 2014;192: 607–627. https://doi.org/10.1016/j.snb.2013.11.005
Cao S., Chen H., Han T., Zhao C., Peng L. Cu2O nanoflowers via hydrothermal synthesis and their gas sensing properties. Materials Letters. 2016;180: 135–139. https://doi.org/10.1016/j.matlet.2016.05.105
Choia J.-M., Byun J.-H., Kim S. S. Influence of grain size on gas- sensing properties of chemiresistive p-type NiO nanofibers. Sensors and Actuators B: Chemical. 2016;227: 149–156. https://doi.org/10.1016/j.snb.2015.12.014
Tian K., Wang X. X., Li H. Y., Nadimicherla R., Guo X. Lotus pollen derived 3-dimensional hierarchically porous NiO microspheres for NO2 gas sensing. Sensors and Actuators B: Chemical. 2016;227: 554–560. https://doi.org/10.1016/j.snb.2015.12.104
Kneer J., Wöllenstein J., Palzer S. Manipulating the gas–surface interaction between copper (II) oxide and ononitrogen oxides using temperature. Sensors and Actuators B: Chemical. 2016;229: 57–62. https://doi.org/10.1016/j.snb.2016.01.104
Srivastava V., Jain K. At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor. Materials Letters. 2016:169: 28–32. https://doi.org/10.1016/j.matlet.2015.12.115
Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection. Thin Solid Films. 2017;636: 751–759. https://doi.org/10.1016/j.tsf.2017.04.009
Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part II. Active centers and sensor behavior. Inorganic Materials. 2016;52:1311–1338. https://doi.org/10.1134/s002016851513004x
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








