Crystallographic classification of special grain boundaries
Abstract
Object of research: Special grain boundaries in centrosymmetric crystals.
The aim of this work is to classify special grain boundaries in centrosymmetric crystals of all syngonies based on the symmetric properties of plane lattices that are the crystallographic planes of these crystals.
Conclusions: It is shown that the set of geometric parameters identifying special boundaries consists of elements of the symmetry of the plane formed by coinciding atoms that preserve the atomic structure of this plane. Possible misorientations of contacting crystals are found depending on the symmetry of the crystallographic plane for different crystallographic syngonies
Downloads
References
Gleyter G., Chalmers B. High-angle Grain Boundaries. Pergamon Press.; 1972. 274 p.
Orlov A. N., Perevezentsev V. N., Rybin V. V. Grain Boundaries in Metals. Moscow, Metallurgy Publ., 1980, 224 p. (In Russ.)
Straumal B. B., Shvindlerman H. P. Thermal stability and regions of existence of special grain boundaries*. Physics, Chemistry and Mechanics of Surfaces. 1986;10: 5 –14. (In Russ.)
Wolf D. Structure and energy of grain boundaries. In: Handbook of Materials Modeling. Dordrecht: Springer; 2005. p. 1953–1983. https://doi.org/10.1007/978-1-4020-3286-8_102
Lindman A., Helgee E. E., Nyman B. J., Wahnström G. Oxygen vacancy segregation in grain boundaries of СaZrO3 using interatomic potentials. Solid State Ionics. 2013;230: 27–31. https://doi.org/10.1016/j.ssi.2012.07.001
Helgee E. E., Lindman A., Wahnström G. Oxygen vacancy segregation in grain boundaries of BaZrO3 using interatomic potentials. Fuel Cells. 2013;13: 19–28. https://doi.org/10.1002/fuce.201200071
Polfus J. M., Toyoura K., Oba F., Tanaka I., Haugsrud R. Defect chemistry of a BaZrO3 Σ3 (111) grain boundary by first principles calculations and space–charge theory. Physical Chemistry Chemical Physics. 2012;14: 12339–12346. https://doi.org/10.1039/c2cp41101f
Fortes M. A. Coincidence site lattices in non-cubic lattices. Physica Status Solidi (b). 1977;82(1): 377–382. https://doi.org/10.1002/pssb.2220820143
Mishin Y., Asta M., Li J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Materialia. 2010;58: 1117–1151. https://doi.org/10.1016/j.actamat.2009.10.049
Bonnet R., Durand F. A general analytical method to find a basis for the DSC lattice. Scripta Metallurgica. 1975;9(9): 935–939. https://doi.org/10.1016/0036-9748(75)90548-7
Watanabe T. Grain boundary engineering: historical perspective and future prospects. Journal of Materials Science. 2011;46: 4095–4115. https://doi.org/10.1007/s10853-011-5393-z
Kobayashia S., Hirataa M., Tsurekawab S., Watanabe T. Grain boundary engineering for control of fatigue crack propagation in austenitic stainless steel. Procedia Engineering. 2011; 10: 112–117. https://doi.org/10.1016/j.proeng.2011.04.021
Randle V. ‘Special’ boundaries and grain boundary plane engineering. Scripta Materialia. 2006;54: 1011–1015. https://doi.org/10.1016/j.scriptamat.2005.11.050
Geng X., Vega-Paredes M., Wang Z., … Gault B. Grain boundar y engineering for efficient and durable electrocatalysis. Nature Communications. 2024;15(1): 8534. https://doi.org/10.1038/s41467-024-52919-w
Zelinsky J. A. An evaluation of grain boundary engineering technology and processing scale- up. Thesis (M. Eng.), Massachusetts Institute of Technology. 2005. pp. 74. Available at: http://hdl.handle.net/1721.1/33616
De Souza R. A., Munir Z. A., Kim S., Martin M. Defect chemistry of grain boundaries in proton-conducting solid oxides. Solid State Ionics. 2011;196: 1–8. https://doi.org/10.1016/j.ssi.2011.07.001
Nyman B. J., Helgee E. E., Wahnström G. Oxygen vacancy segregation and space-charge effects in grain boundaries of dry and hydrated BaZrO3. Applied Physics Letters. 2012;100: 061903. https://doi.org/10.1063/1.3681169
Aus M. J., Szpunar B., Erb U. Electrical, magnetic and mechanical properties of nanocrystalline nickel. MRS Proceedings. 1993;318: 39–44. https://doi.org/10.1557/PROC-318-39
Radle V., Coleman M. A study of low-strain and medium-strain grain boundary engineering. Acta Materialia. 2009; 57: 3410–3421. https://doi.org/10.1016/j.actamat.2009.04.002
Adams T. B., Sinclair D. C., West A. R. Characterization of grain boundary impedances in fine-and coarse-rainedCaCu3Ti4O12 ceramics. Physical Review B. 2006;73: 094124. https://doi.org/10.1103/PhysRevB.73.094124
Cao G., Shen J., Ng D., … Yan C. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications. 2021;10:1. https://doi.org/10.1038/s41377-021-00515-8
Bollmann W. Crystal defects and crystalline interfaces. Berlin: Springer; 1970. https://doi.org/10.1007/978-3-642-49173-3
Grimmer H. A method of determining the coincidence site lattices for cubic crystals. Acta Crystallographica Section A. 1974;30(5): 680–680. https://doi.org/10.1107/S056773947400163X
Singh A., Chandrasekhar N., King A. H. Coincidence orientations of crystals in tetragonal systems with applications to YBa2Cu307. Acta Crystallographica Section B Structural Science. 1990;46: 117–125. https://doi.org/10.1107/S0108768189011006
Grimmer H. Coincidence orientations of grains in rhombohedral materials. Acta Crystallographica Section A Foundations of Crystallography. 1989;45: 505–523. https://doi.org/10.1107/S0108767389002291
Grimmer H., Warrington D. H. Fundamentals for the description of hexagonal lattices in general and in coincidence orientation. Acta Crystallographica Section A Foundations of Crystallography. 1987;43: 232–243. https://doi.org/10.1107/s0108767387099513
Darinskiy B. M., Efanova N. D., Prizhimov A. S. Structure of the special intercrystalline boundaries in two component crystals. Condensed Matter and Interphases. 2019;21(4): 490–496. https://doi.org/10.17308/kcmf.2019.21/2361
Darinskiy B. M., Efanova N. D., Saikо D. S. Special grain boundaries in perovskite crystals. Ferroelectrics. 2020;567: 13–19. https://doi.org/10.1080/00150193.2020.1791582
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








