Кристаллографическая классификация специальных межкристаллитных границ

  • Борис Михайлович Даринский ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-0780-9040
  • Наталия Дмитриевна Ефанова ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация
  • Андрей Сергеевич Прижимов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-0052-0826
  • Анастасия Александровна Суркова ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация
Ключевые слова: решетка совпадающих узлов, межфазные границы, кристалл, специальные межкристаллитные границы

Аннотация

Объект исследования: Специальные межкристаллитные границы в центросимметричных кристаллах.

Цель работы: Классификация специальных межкристаллитных границ в центросимметричных кристаллах всех сингоний на основе симметрийных свойств плоских решеток, являющихся  кристаллографическими плоскостями этих кристаллов.

Выводы: Показано, что совокупность геометрических параметров, идентифицирующих специальные границы, состоит из элементов симметрии плоскости, образованной совпадающими атомами, сохраняющими атомную структуру этой плоскости. Найдены возможные разориентации  контактирующих кристаллов в зависимости от симметрии кристаллографической плоскости для разных кристаллографических сингоний

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Борис Михайлович Даринский, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., профессор, профессор кафедры материаловедения и индустрии
наносистем, Воронежский государственный университет (Воронеж, Российская Федерация)

Наталия Дмитриевна Ефанова, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

аспирант физического факультета, Воронежский государственный университет (Воронеж, Российская Федерация)

Андрей Сергеевич Прижимов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. ф.-м. н., доцент кафедры материаловедения и индустрии наносистем, Воронежский государственный университет (Воронеж, Российская Федерация)

Анастасия Александровна Суркова, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

студент химического факультета, Воронежский государственный университет (Воронеж, Российская Федерация)

Литература

Gleyter G., Chalmers B. High-angle Grain Boundaries. Pergamon Press.; 1972. 274 p.

Orlov A. N., Perevezentsev V. N., Rybin V. V. Grain Boundaries in Metals. Moscow, Metallurgy Publ., 1980, 224 p. (In Russ.)

Straumal B. B., Shvindlerman H. P. Thermal stability and regions of existence of special grain boundaries*. Physics, Chemistry and Mechanics of Surfaces. 1986;10: 5 –14. (In Russ.)

Wolf D. Structure and energy of grain boundaries. In: Handbook of Materials Modeling. Dordrecht: Springer; 2005. p. 1953–1983. https://doi.org/10.1007/978-1-4020-3286-8_102

Lindman A., Helgee E. E., Nyman B. J., Wahnström G. Oxygen vacancy segregation in grain boundaries of СaZrO3 using interatomic potentials. Solid State Ionics. 2013;230: 27–31. https://doi.org/10.1016/j.ssi.2012.07.001

Helgee E. E., Lindman A., Wahnström G. Oxygen vacancy segregation in grain boundaries of BaZrO3 using interatomic potentials. Fuel Cells. 2013;13: 19–28. https://doi.org/10.1002/fuce.201200071

Polfus J. M., Toyoura K., Oba F., Tanaka I., Haugsrud R. Defect chemistry of a BaZrO3 Σ3 (111) grain boundary by first principles calculations and space–charge theory. Physical Chemistry Chemical Physics. 2012;14: 12339–12346. https://doi.org/10.1039/c2cp41101f

Fortes M. A. Coincidence site lattices in non-cubic lattices. Physica Status Solidi (b). 1977;82(1): 377–382. https://doi.org/10.1002/pssb.2220820143

Mishin Y., Asta M., Li J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Materialia. 2010;58: 1117–1151. https://doi.org/10.1016/j.actamat.2009.10.049

Bonnet R., Durand F. A general analytical method to find a basis for the DSC lattice. Scripta Metallurgica. 1975;9(9): 935–939. https://doi.org/10.1016/0036-9748(75)90548-7

Watanabe T. Grain boundary engineering: historical perspective and future prospects. Journal of Materials Science. 2011;46: 4095–4115. https://doi.org/10.1007/s10853-011-5393-z

Kobayashia S., Hirataa M., Tsurekawab S., Watanabe T. Grain boundary engineering for control of fatigue crack propagation in austenitic stainless steel. Procedia Engineering. 2011; 10: 112–117. https://doi.org/10.1016/j.proeng.2011.04.021

Randle V. ‘Special’ boundaries and grain boundary plane engineering. Scripta Materialia. 2006;54: 1011–1015. https://doi.org/10.1016/j.scriptamat.2005.11.050

Geng X., Vega-Paredes M., Wang Z., … Gault B. Grain boundar y engineering for efficient and durable electrocatalysis. Nature Communications. 2024;15(1): 8534. https://doi.org/10.1038/s41467-024-52919-w

Zelinsky J. A. An evaluation of grain boundary engineering technology and processing scale- up. Thesis (M. Eng.), Massachusetts Institute of Technology. 2005. pp. 74. Available at: http://hdl.handle.net/1721.1/33616

De Souza R. A., Munir Z. A., Kim S., Martin M. Defect chemistry of grain boundaries in proton-conducting solid oxides. Solid State Ionics. 2011;196: 1–8. https://doi.org/10.1016/j.ssi.2011.07.001

Nyman B. J., Helgee E. E., Wahnström G. Oxygen vacancy segregation and space-charge effects in grain boundaries of dry and hydrated BaZrO3. Applied Physics Letters. 2012;100: 061903. https://doi.org/10.1063/1.3681169

Aus M. J., Szpunar B., Erb U. Electrical, magnetic and mechanical properties of nanocrystalline nickel. MRS Proceedings. 1993;318: 39–44. https://doi.org/10.1557/PROC-318-39

Radle V., Coleman M. A study of low-strain and medium-strain grain boundary engineering. Acta Materialia. 2009; 57: 3410–3421. https://doi.org/10.1016/j.actamat.2009.04.002

Adams T. B., Sinclair D. C., West A. R. Characterization of grain boundary impedances in fine-and coarse-rainedCaCu3Ti4O12 ceramics. Physical Review B. 2006;73: 094124. https://doi.org/10.1103/PhysRevB.73.094124

Cao G., Shen J., Ng D., … Yan C. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications. 2021;10:1. https://doi.org/10.1038/s41377-021-00515-8

Bollmann W. Crystal defects and crystalline interfaces. Berlin: Springer; 1970. https://doi.org/10.1007/978-3-642-49173-3

Grimmer H. A method of determining the coincidence site lattices for cubic crystals. Acta Crystallographica Section A. 1974;30(5): 680–680. https://doi.org/10.1107/S056773947400163X

Singh A., Chandrasekhar N., King A. H. Coincidence orientations of crystals in tetragonal systems with applications to YBa2Cu307. Acta Crystallographica Section B Structural Science. 1990;46: 117–125. https://doi.org/10.1107/S0108768189011006

Grimmer H. Coincidence orientations of grains in rhombohedral materials. Acta Crystallographica Section A Foundations of Crystallography. 1989;45: 505–523. https://doi.org/10.1107/S0108767389002291

Grimmer H., Warrington D. H. Fundamentals for the description of hexagonal lattices in general and in coincidence orientation. Acta Crystallographica Section A Foundations of Crystallography. 1987;43: 232–243. https://doi.org/10.1107/s0108767387099513

Darinskiy B. M., Efanova N. D., Prizhimov A. S. Structure of the special intercrystalline boundaries in two component crystals. Condensed Matter and Interphases. 2019;21(4): 490–496. https://doi.org/10.17308/kcmf.2019.21/2361

Darinskiy B. M., Efanova N. D., Saikо D. S. Special grain boundaries in perovskite crystals. Ferroelectrics. 2020;567: 13–19. https://doi.org/10.1080/00150193.2020.1791582

Опубликован
2025-09-25
Как цитировать
Даринский, Б. М., Ефанова, Н. Д., Прижимов, А. С., & Суркова, А. А. (2025). Кристаллографическая классификация специальных межкристаллитных границ. Конденсированные среды и межфазные границы, 27(3), 363-367. https://doi.org/10.17308/kcmf.2025.27/13012
Раздел
Оригинальные статьи