Crystallographic classification of special grain boundaries

  • Boris M. Darinsky Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-0780-9040
  • Natalia D. Efanova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Andrey S. Prizhimov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-0052-0826
  • Anastasiya A. Surkova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
Keywords: Lattice of matching nodes, Interfaces, Crystal, Special grain boundaries

Abstract

Object of research: Special grain boundaries in centrosymmetric crystals.

The aim of this work is to classify special grain boundaries in centrosymmetric crystals of all syngonies based on the symmetric properties of plane lattices that are the crystallographic planes of these crystals.

Conclusions: It is shown that the set of geometric parameters identifying special boundaries consists of elements of the symmetry of the plane formed by coinciding atoms that preserve the atomic structure of this plane. Possible misorientations of contacting crystals are found depending on the symmetry of the crystallographic plane for different crystallographic syngonies 

Downloads

Download data is not yet available.

Author Biographies

Boris M. Darinsky, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Full Professor, Voronezh State University (Voronezh, Russian Federation)

Natalia D. Efanova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

graduate student of Faculty of Physics, Voronezh State University (Voronezh, Russian Federation)

Andrey S. Prizhimov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher, Voronezh State University (Voronezh, Russian
Federation)

Anastasiya A. Surkova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student of Faculty of Chemistry, Voronezh State University (Voronezh, Russian Federation)

References

Gleyter G., Chalmers B. High-angle Grain Boundaries. Pergamon Press.; 1972. 274 p.

Orlov A. N., Perevezentsev V. N., Rybin V. V. Grain Boundaries in Metals. Moscow, Metallurgy Publ., 1980, 224 p. (In Russ.)

Straumal B. B., Shvindlerman H. P. Thermal stability and regions of existence of special grain boundaries*. Physics, Chemistry and Mechanics of Surfaces. 1986;10: 5 –14. (In Russ.)

Wolf D. Structure and energy of grain boundaries. In: Handbook of Materials Modeling. Dordrecht: Springer; 2005. p. 1953–1983. https://doi.org/10.1007/978-1-4020-3286-8_102

Lindman A., Helgee E. E., Nyman B. J., Wahnström G. Oxygen vacancy segregation in grain boundaries of СaZrO3 using interatomic potentials. Solid State Ionics. 2013;230: 27–31. https://doi.org/10.1016/j.ssi.2012.07.001

Helgee E. E., Lindman A., Wahnström G. Oxygen vacancy segregation in grain boundaries of BaZrO3 using interatomic potentials. Fuel Cells. 2013;13: 19–28. https://doi.org/10.1002/fuce.201200071

Polfus J. M., Toyoura K., Oba F., Tanaka I., Haugsrud R. Defect chemistry of a BaZrO3 Σ3 (111) grain boundary by first principles calculations and space–charge theory. Physical Chemistry Chemical Physics. 2012;14: 12339–12346. https://doi.org/10.1039/c2cp41101f

Fortes M. A. Coincidence site lattices in non-cubic lattices. Physica Status Solidi (b). 1977;82(1): 377–382. https://doi.org/10.1002/pssb.2220820143

Mishin Y., Asta M., Li J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Materialia. 2010;58: 1117–1151. https://doi.org/10.1016/j.actamat.2009.10.049

Bonnet R., Durand F. A general analytical method to find a basis for the DSC lattice. Scripta Metallurgica. 1975;9(9): 935–939. https://doi.org/10.1016/0036-9748(75)90548-7

Watanabe T. Grain boundary engineering: historical perspective and future prospects. Journal of Materials Science. 2011;46: 4095–4115. https://doi.org/10.1007/s10853-011-5393-z

Kobayashia S., Hirataa M., Tsurekawab S., Watanabe T. Grain boundary engineering for control of fatigue crack propagation in austenitic stainless steel. Procedia Engineering. 2011; 10: 112–117. https://doi.org/10.1016/j.proeng.2011.04.021

Randle V. ‘Special’ boundaries and grain boundary plane engineering. Scripta Materialia. 2006;54: 1011–1015. https://doi.org/10.1016/j.scriptamat.2005.11.050

Geng X., Vega-Paredes M., Wang Z., … Gault B. Grain boundar y engineering for efficient and durable electrocatalysis. Nature Communications. 2024;15(1): 8534. https://doi.org/10.1038/s41467-024-52919-w

Zelinsky J. A. An evaluation of grain boundary engineering technology and processing scale- up. Thesis (M. Eng.), Massachusetts Institute of Technology. 2005. pp. 74. Available at: http://hdl.handle.net/1721.1/33616

De Souza R. A., Munir Z. A., Kim S., Martin M. Defect chemistry of grain boundaries in proton-conducting solid oxides. Solid State Ionics. 2011;196: 1–8. https://doi.org/10.1016/j.ssi.2011.07.001

Nyman B. J., Helgee E. E., Wahnström G. Oxygen vacancy segregation and space-charge effects in grain boundaries of dry and hydrated BaZrO3. Applied Physics Letters. 2012;100: 061903. https://doi.org/10.1063/1.3681169

Aus M. J., Szpunar B., Erb U. Electrical, magnetic and mechanical properties of nanocrystalline nickel. MRS Proceedings. 1993;318: 39–44. https://doi.org/10.1557/PROC-318-39

Radle V., Coleman M. A study of low-strain and medium-strain grain boundary engineering. Acta Materialia. 2009; 57: 3410–3421. https://doi.org/10.1016/j.actamat.2009.04.002

Adams T. B., Sinclair D. C., West A. R. Characterization of grain boundary impedances in fine-and coarse-rainedCaCu3Ti4O12 ceramics. Physical Review B. 2006;73: 094124. https://doi.org/10.1103/PhysRevB.73.094124

Cao G., Shen J., Ng D., … Yan C. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications. 2021;10:1. https://doi.org/10.1038/s41377-021-00515-8

Bollmann W. Crystal defects and crystalline interfaces. Berlin: Springer; 1970. https://doi.org/10.1007/978-3-642-49173-3

Grimmer H. A method of determining the coincidence site lattices for cubic crystals. Acta Crystallographica Section A. 1974;30(5): 680–680. https://doi.org/10.1107/S056773947400163X

Singh A., Chandrasekhar N., King A. H. Coincidence orientations of crystals in tetragonal systems with applications to YBa2Cu307. Acta Crystallographica Section B Structural Science. 1990;46: 117–125. https://doi.org/10.1107/S0108768189011006

Grimmer H. Coincidence orientations of grains in rhombohedral materials. Acta Crystallographica Section A Foundations of Crystallography. 1989;45: 505–523. https://doi.org/10.1107/S0108767389002291

Grimmer H., Warrington D. H. Fundamentals for the description of hexagonal lattices in general and in coincidence orientation. Acta Crystallographica Section A Foundations of Crystallography. 1987;43: 232–243. https://doi.org/10.1107/s0108767387099513

Darinskiy B. M., Efanova N. D., Prizhimov A. S. Structure of the special intercrystalline boundaries in two component crystals. Condensed Matter and Interphases. 2019;21(4): 490–496. https://doi.org/10.17308/kcmf.2019.21/2361

Darinskiy B. M., Efanova N. D., Saikо D. S. Special grain boundaries in perovskite crystals. Ferroelectrics. 2020;567: 13–19. https://doi.org/10.1080/00150193.2020.1791582

Published
2025-09-25
How to Cite
Darinsky, B. M., Efanova, N. D., Prizhimov, A. S., & Surkova, A. A. (2025). Crystallographic classification of special grain boundaries. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(3), 363-367. https://doi.org/10.17308/kcmf.2025.27/13012
Section
Original articles