Structure of the Special Intercrystalline Boundaries in Two Component Crystals

  • Boris M. Darinskiy Vorornezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation https://orcid.org/0000-0003-0052-0826
  • Natalia D. Efanova Vorornezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Andrey S. Prizhimov Vorornezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
Keywords: coincidence site lattice, interfaces, crystal, special boundaries, structure.

Abstract

Object. The object of the study was the intercrystalline boundaries with a periodic atomic structure
in two-component cubic crystals. Special boundaries are characterized by increased thermodynamic
stability due to the relatively low energy of formation and specifi c electrical characteristics,
such as Schottky barriers. Therefore, they are of great interest to researchers and developers of
materials and devices. This study was carried out in the grain boundary engineering direction based
on ion crystals. Aim of the study. The goal of the study was the atomic structure of these boundaries,
classifi cation of intercrystalline boundaries based on their elemental composition, and the
evaluation of intercrystalline boundaries as sources of electric fi elds in the crystal volume.
Methods and methodology. As a method of research, the ideas of crystallographic symmetry
of lattices having a simple, face-centred, and bulk-centred geometric structure were used.
Results. A new method was developed for the appliance of lattice sites to certain elements of
chemical composition using a specially constructed crystallographic group called the group of
displacements. Specifi c groups of displacements for crystals of BCC, FCC, and simple cubic structure
with two-component chemical composition were constructed. Based on this, the conditions
determining the families of planes with the same elemental compositions and the relative arrangement
of elements in the intercrystalline contact were formulated. Families of neutral
atomic planes and families containing excess positive and negative charges were specifi ed.
Conclusion. The technique of determining the sequence of alternation of these planes in the
intercrystalline boundary region was described. NaCl, CsCl, and other crystals are considered as
examples. For each crystal family, the orientations of the charged and neutral planes were indicated.

 

 

 

 

REFERENCES
1. Bollmann W. On the geometry of grain and phase boundaries. Phil. Mag., 1967, v. 16(140),
pp. 363-381. DOI: https://doi.org/10.1080/14786436708229748
2. Bollmann W. On the geometry of grain and phase boundaries. Phil. Mag., 1967, v. 16(140), pp. 383–
399. https://doi.org/10.1080/14786436708229749
3. Grimmer H. A method of determining the coincidence site lattices for cubic crystals. Acta
Cryst. A, 1974, v. 30(2), pp. 680–680. DOI: https://doi.org/10.1107/s056773947400163x
4. Grimmer H., Bollmann W., Warrington D. T. Coincidence-site lattices and complete pat-tern-shift in cubic crystals. Acta Cryst. A, 1974, v. 30(2), pp. 197–207. DOI: https://doi.org/10.1107/s056773947400043x
5. Orlov A. N., Perevezentsev V. N., Rybin V. V. Grain boundaries in metals. Moscow, Metallurgy
Publ., 1980, 224 p. (in Russ.)
6. Gleyter G., Chalmers B. High-angle Ggrain Bdoundaries. Moscow, Mir Publ., 1975, 376 p. (in Russ.)
7. Straumal B. B., Shvindlerman H. P. Thermal stability and regions of existence of special grain
boundaries. Surface. Physics, Chemistry, Mechanics, 1986, v. 10, pp. 5–14. (in Russ.)
8. Fortes M. A. Coincidence site lattices in non-cubic lattices. Phys. Stat. Sol. B, 1977, v. 82(1).
pp. 377–382. DOI: https://doi.org/10.1002/pssb.2220820143
9. Bonnet R., Durand F. A general analytical method to fi nd a basis for the DSC lattice. Scripta
Met., 1975, v. 9(9), pp. 935–939. DOI: https://doi.org/10.1016/0036-9748(75)90548-7
10. Bonnet R. Note on a general analytical method to fi nd a basis for the DSC lattice. Derivation
of a basis for the CSL. Scripta Met., 1976, v. 10(9), pp. 801–806. DOI: https://doi.org/10.1016/0036-9748(76)90297-0
11. Bonnet R., Cousineau E. Computation of coincident and near-coincident cells for any two
lattices – related DSC-1 and DSC-2 lattices. Acta Cryst. A, 1977, v. 33(5), pp. 850–856. DOI: https://doi.org/10.1107/s0567739477002058
12. Rybin V. V., Perevezentsev V. N. FTT [Technical Physics], 1975, v. 17, pp. 3188–3193. (in Russ.)
13. Andreeva A. V., Fionova L. K. Analysis of intergranular boundaries based on the theory of lattices
of matching nodes. Fizika Metallov i Metallovedenie [Physics of Metals and Metallography], 1977,
v. 44, pp. 395–400. (in Russ.)
14. Kaibyshev O. A., Valiev R. Z. Grain boundaries and properties of metals. Moscow, Metallurgy Publ.,
1987, 214 p. (in Russ.)
15. Kopetsky H. V., Orlov A. N., Fionova L. K. Grain boundaries in pure materials. Moscow, Nauka
Publ., 1987, 160 p. (in Russ.)
16. Bokshtein B. S. Structure and properties of internal interfaces in metals. Moscow, Metallurgy Publ.,
1988, 272 p. (in Russ.)
17. Kobayashi S., Tsurekawa S., Watanabe T. A new approach to grain boundary engineering for
nanocrystalline materials. Beilstein J Nanotechnol., 2016(7), pp. 1829–1849. DOI: https://doi.org/10.3762/bjnano.7.176
18. Sukhomlin G. D. Special boundaries in low carbon steel ferrite. Metallofi z. Noveishie Tekhnol.
2013, v. 35, pp. 1237–1249. (in Russ.)
19. Watanabe T. Grain boundary engineering: historical perspective and future prospects. Journal
of Materials Science, 2011, v. 46, pp. 4095–4115. DOI: https://doi.org/10.1007/s10853-011-5393-z
20. Waser R. Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics. Solid
State Ionics, 1995, v. 75, pp. 89–99. DOI: https://doi.org/10.1016/0167-2738(94)00152-i
21. Daniels J., Wemicke R. New Aspects of an Improved PTC Model. Philips Res. Rep., 1976, v. 31,
pp. 544–559.
22. Vikrant K. S. N., Edwin G. R. Charged grain boundary transitions in ionic ceramics for energy
applications. Computational Materials, 2019, v. 5(1), pp. 24. DOI: https://doi.org/10.1038/s41524-019-0159-2
23. Kim M., Duscher G., Browning N. D., Sohlberg K., Pantelides S.T., Pennycook S.J. Nonstoichiometry
and the electrical activity of grain boundaries in SrTiO3. Physical Review Letters, 2001, v. 86,
pp. 4056–4059. DOI: https://doi.org/10.1103/physrevlett.86.4056
24. Oyama T., Wada N., Takagi H. Trapping of oxygen vacancy at grain boundary and its correlation
with local atomic confi guration and resultant excess energy in barium titanate: A systematic computational
analysis. Physical Review B, 2010, v. 82, pp. 134107. DOI: https://doi.org/10.1103/physrevb.82.134107
25. Duffy D. M., Tasker P. W. Space-charge regions around dipolar grain boundaries. Journal
of Applied Physics, 1984, v. 56, pp. 971–977. DOI: https://doi.org/10.1063/1.334037
26. Darinsky B. M., Efanova N. D., Prizhimov A. S. Systematics of coincidence site lattices for BCC and
FCC crystals // Konsensirovannye sredy i mezhfaznye granicy [Condensed Matter and Interphases], 2018,
v. 20(4), pp. 581–586. DOI: https://doi.org/10.17308/kcmf.2018.20/632 (in Russ.)

Downloads

Download data is not yet available.

Author Biographies

Boris M. Darinskiy, Vorornezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Dr. Sci. (Phys.-Math.), Full Professor, Voronezh State University, Voronezh,
Russian Federation; e-mail: darinskii@mail.ru.

Natalia D. Efanova, Vorornezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

student of Physics Faculty, Voronezh State University, Voronezh, Russian
Federation; e-mail: efanowanatalia@gmail.com

Andrey S. Prizhimov, Vorornezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher, Voronezh State University
Voronezh, Russian Federation; e-mail: rnileme@mail.ru.


Abstract views: 0
PDF Downloads: 0
Published
2019-12-19
How to Cite
Darinskiy, B., Efanova, N., & Prizhimov, A. (2019). Structure of the Special Intercrystalline Boundaries in Two Component Crystals. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(4), 498-504. https://doi.org/https://doi.org/10.17308/kcmf.2019.21/2361
Section
Статьи