The Composition and Structure of Phases, Formed in the Thermolysis of Substitutional Solid Solutions H2Sb2–xVxO6·nH2O

Keywords: pyrochlore-type structure, antimony compounds, polyantimonic acid, substitutional solid solutions, thermal analysis, phase transformations.

Abstract

In compounds, crystallized within the pyrochlore-type structure (sp.gr. Fd3m) of the А2В2X6X’ general formula, there could be doubly or triply charged ions in the place of A cations, quadruply or quintuply charged ions in the place of B cations. Most works are devoted to the formation of these structures, depending on the nature and sizes of A and B cations, while little attention has been paid to determining the temperature ranges of their stability. The aim of this work was to study the thermolysis of substitutional solid solutions H2Sb2–xVxO6·nH2O in the range of 25–700 °C and the determination of the
infl uence of the nature of B (Sb, V) cation on the stability of pyrochlore-type structures during heating.
Substitutional solid solutions have been obtained by the co-precipitation method. The samples, containing 0; 5 (x = 0.10); 15 (x = 0.30); 20 (x = 0.40); 24 (x = 0.48) at% of vanadium have been chosen as subjects of the present research. The changes in the proton hydrate sublattice in samples, containing different amounts of V+5 were analysed by IR spectroscopy. The modelling of the thermolysis process and determination of the phase compositions at each stage was possible using X-ray phase and thermogravimetric analysis of the samples.
It was shown that at temperatures of 25–400 °C, proton-containing groups are removed from the hexagonal channels of the pyrochlore-type structure. The increase in number of V+5 ions in solid solutions changed the proton-binding energy with oxygen ions [BO3]-octahedron, which led to the shift of stage boundaries: oxonium ions and water molecules were removed at higher temperatures, while hydroxide ions were removed at lower temperatures. An increase in temperature to over 500 °C led to the structure destruction due to the oxygen removal from [BO3]-octahedrons. The model for the atomic fi lling of crystallographic positions in the pyrochlore-type structure for phases, formed during H2Sb2–xVxO6·nH2O
thermolysis at 25–400 °C, has been proposed.
According to the thermogravimetric analysis, the structural formulas of solid solutions under the air-dry condition has been determined. (H3O)Sb2–xVxO5(OH)·nH2O, where 0 < x £ 0.48, 0 <n £ 1.1. It has been shown that the temperature ranges of thermolysis stages were affected by the proton-binding energy with oxygen ions [BO3]-octahedron temperature ranges, where B = V, Sb, forming the structural frame. It has been found that the studied solid solutions are stable up to 400 °C within the framework of the pyrochlore-type structure.

 

 

 

 

REFERENCES

  1. Subramanian M. A., Aravamudan G., Rao G. V. S. Oxide pyrochlores – A review. Progress in Solid State Chemistry. 1983;15(2): 55–143. DOI: https://doi.org/10.1016/0079-6786(83)90001-8
  2. Krasnov A. G., Piir I. V., Koroleva M. S., Sekushin N. A., Ryabkov Y. I., Piskaykina M. M., Sadykov V. A., Sadovskaya E. M., Pelipenko V. V., Eremeev N. F. The conductivity and ionic transport of doped bismuth titanate pyrochlore Bi1.6MxTi2O7–d (M – Mg, Sc, Cu). Solid State Ionics. 2017;302: 118–125. DOI: https://doi.org/10.1016/j.ssi.2016.12.01.019
  3. Cherednichenko L. A., Moroz Ya. A. Catalytic properties of heteropolytungstates with 3d elements and their thermolysis products. Kinetics and Catalysis. 2018;59(5): 572–577. DOI: https://doi.org/10.1134/S0023158418050038
  4. Krasnov A. G., Kabanov A. A., Kabanova N. A., Piir I. V., Shein I. R. Ab initio modeling of oxygen ion migration in non-stoichiometric bismuth titanate pyrochlore Bi1.5Ti2O6.25. Solid State Ionics. 2019;335: 135–141. DOI: https://doi.org/10.1016/j.ssi.2019.02.023
  5. Farlenkov A. S., Khodimchuk A. V., Eremin V. A., Tropin E. S., Fetisov A. V., Shevyrev N. A., Leonidov I. I., Ananyev M. V. Oxygen isotope exchange in doped lanthanum zirconates. Journal of Solid State Chemistry. 2018;268: 45–54. DOI: https://doi.org/10.1016/j.jssc.2018.08.08.022
  6. Rejith R. S., Thomas J. K., Solomon S. Structural, optical and impedance spectroscopic characterizations of RE2Zr2O7 (RE = La, Y) ceramics. Solid State Ionics. 2018;323: 112–122. DOI: https://doi.org/10.1016/j.ssi.2018.05.025
  7. Egorysheva A. V., Ellert O. G., Gaitko O. M., Berseneva A. A., Maksimov Y. V., Dudkina T. D. Magnetic properties of Pr2-xFe1 + xSbO7 and Bi2 – xLnxFeSbO7 (Ln = La, Pr) pyrochlore solid solutions. Inorganic Materials. 2016;52(10): 1035-1044. DOI: https://doi.org/10.1134/S0020168516100071
  8. Rau J. G., Gingras M. J. P. Frustrated quantum rare-earth pyrochlores. Annual Review of Condensed Matter Physics. 2019;10(1): 357–386. DOI: https://doi.org/10.1146/annurev-conmatphys-022317-110520
  9. Lomanova N. A., Tomkovich M. V., Sokolov V. V., Ugolkov V. L. Formation and thermal behavior of nanocrystalline Bi2Ti2O7. Russian Journal of General Chemistry. 2018;88(12): 2459–2464. DOI: https://doi.org/10.1134/s1070363218120010
  10. Liu X., Huang L., Wu X., Wang Z., Dong G., Wang C., Liu Y., Wang L. Bi2Zr2O7 nanoparticles synthesized by soft-templated sol-gel methods for visible-light-driven catalytic degradation of tetracycline. Chemosphere. 2018;210: 424–432. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.040
  11. Weller M. T., Hughes R. W., Rooke J., Knee Ch. S., Reading J. The pyrochlore family - a  potential panaceafor the frustrated perovskite chemist. Dalton transactions. 2004;19: 3032–3041. DOI: https://doi.org/10.1039/B401787K
  12. Knop O., Brisse F., Meads R. E., Brainbridge J. Pyrochlores. IV. Crystallographic and Mossbauer studies of A2FeSbO7 pyrochlores. Canadian Journal of Chemistry. 1968;46: 3829–3832. DOI: https://doi.org/10.1139/v68-635
  13. Sadykov V. A., Koroleva M. S., Piir I. V., Chezhina N. V., Korolev D. A., Skriabin P. I., Krasnov A. V., Sadovskaya E. M., Eremeev N. F., Nekipelov S. V., Sivkov V. N. Structural and transport properties of doped bismuth titanates and niobates. Solid State Ionics. 2018;315: 33–39. DOI: https://doi.org/10.1016/j.ssi.2017.12.00.008
  14. Egorysheva A. V., Popova E. F., Tyurin A. V. Khoroshilov A. V., Gajtko O. M., Svetogorov R. D. Complex rare-earth tantalates with pyrochlore-like structure: synthesis, structure, and thermal properties. Russian Journal of Inorganic Chemistry. 2019;64: 1342–1353. DOI: https://doi.org/10.1134/S0036023619110056
  15. McCauley R. A. Structural characteristics of pyrochlore formation. Journal of Applied Physics. 1980;51(1): 290–294. DOI: https://doi.org/10.1063/1.327368
  16. Lupitskaya Y. A., Burmistrov V. A. Phase formation in the K2CO3-Sb2O3-WO3 system on heating. Russian Journal of Inorganic Chemistry. 2011;56(2): 290–292. DOI: https://doi.org/10.1134/S0036023611020173
  17. Piir I. V., Koroleva M. S., Korolev D. A., Chezina N. V., Semenov V. G., Panchuk V. V. Bismuth iron titanate pyrochlores: Thermostability, structure and properties. Journal of Solid State Chemistry. 2013;204: 245–250. DOI: https://doi.org/10.1016/j.jssc.2013.05.031
  18. Lupitskaya Y. A., Kalganov D. A., Klyueva M. V. Formation of compounds in the Ag2O–Sb2O3–MoO3 system on heating. Inorganic materials. 2018;54(3): 240–244. DOI: https://doi.org/10.1134/S0020168518030081
  19. Lomakin M. S., Proskurina O. V., Danilovich D. P., Panchuk V. V., Semenov V. G., Gusarov V. V. Hydrothermal synthesis, phase formation and crystal chemistry of the pyrochlore/Bi2WO6 and pyrochlore/a-Fe2O3 composites in the Bi2O3–Fe2O3–WO3 system. Journal of Solid State Chemistry. 2020,282: 121064 DOI: https://doi.org/10.1016/j.jssc.2019.121064
  20. Yang J., Han Y., Shahid M., Pan W., Zhao M., Wu W., Wan C. A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7. Scripta Materialia. 2018;149: 49–52. DOI: https://doi.org/10.1016/j.scriptamat.2018.02.005
  21. Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Kovalev I. N., Galimov D. M. Synthesis ofthe solid solutions H2Sb2–xVxO6·nH2O with the pyrochlore-type structure Butlerovskie soobshhenija = Butlerov Communications. 2018;55(8): 24–30. ROI: jbc-01/jbc-01/18-55-8-24 (In Russ., abstract in Eng.)
  22. Kovalenko L. Yu., Burmistrov V. A. Dielectric relaxation and proton conductivity of polyantimonic acid doped with vanadium ions. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(2): 204–214. DOI: https://doi.org/10.17308/kcmf.2019.21/758 (In Russ., abstract in Eng.)
  23. Trofi mov V. G., Sheinkman A. I., Kleshchev G. V. About antimony pentoxide in a crystalline state. Journal of Structural Chemistry. 1973;14(2): 275–279. (In Russ.)
  24. Kovalenko L. Yu., Yaroshenko F. A., Burmistrov V. A., Isaeva T. N., Galimov D. M. Thermolysis of Hydrated Antimony Pentoxide. Inorganic Materials. 2019;55(6): 586–592. DOI: https://doi.org/10.1134/S0020168519060086
  25. Chen J., Chen Z., Zhang X., Li X., Yu L., Li. D. Antimony oxide hydrate (Sb2O5·3H2O) as a simple and high effi cient photocatalyst for oxidation of benzene. Applied Catalysis B: Environmental. 2018;210: 379–385. DOI: https://doi.org/10.1016/j.apcatb.2017.04.004
  26. Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Yaroshenko F. A., Filonenko E. M., Bulaeva E. A. Ion exchange of H+/Na+ in polyantimonic acid, doped with vanadium ions. Pure and Applied Chemistry. 2019. DOI: https://doi.org/10.1515/pac-2019-0112
  27. Yukhnevich G. V. Advances in the use of infrared spectroscopy for the characterization of OH bonds. Russian Chemical Reviews. 1963;32(11): 619–633. DOI: https://doi.org/10.1070/RC1963v032n11ABEH001370
  28. Tarasova N. A., Animitsa I. E. The infl uence of the nature of halogen on the local structure  and intercalation of water in oxyhalides Ba2InO3X (X = F, Cl, Br). Optics and Spectroscopy. 2018;124: 163. DOI: https://doi.org/10.1134/S0030400X18020170
  29. Deryagin B. V., Churaev N. V., Ovcharenko F. D., Tarasevich Ju. I., Bukin V. A., Sarvazjan A. P., Harakoz D. P., Saushkin V. V. Water in disperse systems. Moscow: Chemistry Publ.; 1989. 288 p. (In Russ.)
  30. Ferapontov N. B., Vdovina S. N., Gagarin A. N., Strusovskaja N. L., Tokmachev M. G. Water properties in hydrophylic polymer gels. Kondensirovannye sredy i mezhfaznye granicy = Condensed Matter and Interphases. 2011;13(2): 208–214. Available at: http://www.kcmf.vsu.ru/resources/t_13_2_2011_015.pdf (In Russ.)
  31. Frenkel L. S. Nuclear magnetic resonance method for determining the moisture holding capacity of cation exchange resins as a function of temperature. Analytical Chemistry. 1973;45(8): 1570–1571. DOI: https://doi.org/10.1021/ac60330a052
  32. Kargovsky A. V. Water clusters: structures and optical vibrational spectra. Izvestiya VUZ. Applied nonlinear dynamics. 2006;14(5): 110–119. DOI: https://doi.org/10.18500/0869-6632-2006-14-5-110-119 (In Russ., abstract in Eng.)
  33. Eisenberg D., Kauzmann W. The Structure and properties of water. Oxford: Oxford University Press; 1969. 296 p.
  34. Yu T., Zhang H., Cao H., Zheng G. Understanding the enhanced removal of Bi(III) using modified crystalline antimonic acids: creation of a transitional pyrochlore-type structure and the Sb(V)–Bi(III) interaction behaviors. Chemical Engineering Journal. 2019;360: 313–324. DOI: https://doi.org/10.1016/j.cej.2018.11.209
  35. Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds: Part A: Theory and applications inorganic chemistry (Sixth ed.). New York: John Wiley & Sons; 2009. 419 p. DOI: https://doi.org/10.1002/9780470405840
  36. Birchall T., Sleight A. W. Oxidation states in vanadium antimonate (“VSbO4”). Inorganic chemistry. 1976;15(4): 868–870. DOI: https://doi.org/10.1021/ic50158a026
  37. Guerrero-Pérez M. O. V-containing mixed oxide catalysts for reduction – oxidation-based reactions with environmental applications: A short review. Catalysts. 2018;8(11): 564. DOI: https://doi.org/10.3390/catal8110564
  38. Yaroslavtsev A. B., Kotov V. Yu. Proton mobility in hydrates of inorganic acids and acid salts. Russian Chemical Bulletin. 2002;51(4): 555–568.
  39. Pauling, L. The nature of the chemical bond – an introduction to modern structural chemistry. (3rd Edition). New York: Cornell University Press, Ithaca; 1960.

Downloads

Download data is not yet available.

Author Biographies

Liliya Yu. Kovalenko, Chelyabinsk State University, 129 Bratiev Kashirinykh str., Chelyabinsk 454001, Russian Federation

Senior Lecturer of the Department of Solid State Chemistry and Nanoprocesses, Chelyabinsk State University,
Chelyabinsk, Russian Federation, e-mail: lkovalenko90@mail.ru

Vladimir A. Burmistrov, Chelyabinsk State University, 129 Bratiev Kashirinykh str., Chelyabinsk 454001, Russian Federation

DSc in Physics and Mathematics, Professor, Dean of Chemical Department, Chelyabinsk State University, Chelyabinsk, Russian Federation; e-mail: burmistrov@csu.ru.

Dmitrii A. Zakhar’evich,, Chelyabinsk State University, 129 Bratiev Kashirinykh str., Chelyabinsk 454001, Russian Federation

PhD in Physics and Mathematics, Associate Professor, Acting Dean of Physical Department, Chelyabinsk State University, Chelyabinsk, Russian Federation; e-mail: dmzah@csu.ru.

Published
2020-03-17
How to Cite
Kovalenko, L. Y., Burmistrov, V. A., & Zakhar’evich, D. A. (2020). The Composition and Structure of Phases, Formed in the Thermolysis of Substitutional Solid Solutions H2Sb2–xVxO6·nH2O. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2507
Section
Статьи