X-ray Diffraction Analysis of Thin Metal Films with Magnetic Layers of Fe-Cr-Co Alloy

  • Vyacheslav S. Zayonchkovskiy aObninsk Institute for Nuclear Power Engineering (OINPE) - a branch of National Research Nuclear University MEPhI, 1 Studgorodok, Obninsk 249040, Kaluga region, Russian Federation https://orcid.org/0000-0002-6519-6003
  • Irina A. Antoshina Kaluga branch of Bauman Moscow State Technical University (national research university), 2 Bazhenova str., Kaluga 248000, Russian Federation https://orcid.org/0000-0001-9143-2404
  • Kyaw Kyaw Aung aObninsk Institute for Nuclear Power Engineering (OINPE) - a branch of National Research Nuclear University MEPhI, 1 Studgorodok, Obninsk 249040, Kaluga region, Russian Federation https://orcid.org/0000-0001-8427-3046
  • Evgenij I. Isaev Kaluga branch of Bauman Moscow State Technical University (national research university), 2 Bazhenova str., Kaluga 248000, Russian Federation https://orcid.org/0000-0002-1777-5342
  • Igor’ M. Milyaev Baikov Institute of Metallurgy and Materials Science, RAS, 49 Leninsky prospekt, Moscow 119334, Russian Federation
Keywords: magnetron sputtering, thin fi lms, coercive force, vacuum annealing, phase composition.

Abstract

The aim of this study was to determine the phase composition of the structures of permanent magnet fi lms with layers of a Fe-Cr-Co alloy of micron range thickness, also known as the Kaneko alloy. The information about the phase composition is necessary for the development of physical and technical approaches for the production of optimal structures with permanent magnet fi lms on single-crystal silicon wafers, the fi lms being based on a dispersion-hardened alloy with the magnetization vector in the plane of the silicon substrate.
Three-layer metal fi lms were obtained by magnetron sputtering on a silicon wafer: a dispersion-hardened alloy layer based on the Fe-Cr-Co system (3600 nm thick), ), a compensating copper layer (3800 nm), and a vanadium adhesion barrier layer (110 nm). Multilayer fi lms formed on a silicon wafer were subjected to one-minute of annealing in a high vacuum in the temperature range of 600–650 °C. A qualitative phase analysis of the structures obtained by magnetron sputtering and subjected to a single-stage thermal treatment was performed using X-ray diffraction.
It was determined that high-vacuum “rapid” one-minute of annealing of the Fe-Cr-Co dispersion-hardened alloy layer in the temperature range of 600–650 °C does not result in the formation of oxides of the main components or the s-phase. At the temperature of 630 °C, the maximum intensity of the X-ray diffraction line (110) of the a-phase is observed, which indicates the formation of a predominantly a-solid solution and serves as a basis for the correct implementation of the subsequent annealing stages for the spinodal decomposition of this phase.

 

 

 

 

REFERENCES

  1. Kaneko H., Homma M., Nakamura K. New ductile permanent magnet of Fe-Cr-Co system. AJP Conference Proceedings. 1972;5: 1088–1092. DOI: https://doi.org/10.1063/1.2953814
  2. Tsung-Shune Chin, Kou-Her Wang, Cheng-Hsiung Lin. High coercivity Fe-Cr-Co thin fi lms by vacuum evaporation. Japanese Journal of Applied Physics. 1991;30(8): 1652–1695. DOI: https://doi.org/10.1143/jjap.30.1692
  3. Chang H. C., Chang Y. H., Yao S. Y. The magnetic properties and microstructures of Fe-Cr-Co thin fi lms obtained by ion beam sputtering. Materials Science and Engineering B. 1996; 39(2): 87–94. DOI: https://doi.org/10.1016/0921-5107(95)01428-4
  4. Masahiro Kitada, Yoshihisa Kamo, Hideo Tanabe. Magnetoresistive thin-fi lm sensor with permanent magnet biasing film. Journal of Applied Physics. 1985;58(4): 1667–1670. DOI: https://doi.org/10.1063/1.336058
  5. Rastabi R. A., Ghasemi A., Tavoosi M., Ramazani M. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering. Magnetic Materials. 2017;426(15): 742–752. DOI: https://doi.org/10.1016/j.jmmm.2016.10.132
  6. Zubair Ahmad, Zhongwu Liu, A. ul Haq. Synthesis, magnetic and microstructural properties of Alnico magnets with additives. Journal of Magnetism and Magnetic Materials. 2017;428: 125–131. DOI: https://doi.org/10.1016/j.jmmm.2016.12.023
  7. Jin Y., Zhang W., Kharel P. R., Valloppilly S. R., Skomski R., Sellmyer D. J. Effect of boron doping on nanostructure and magnetism of rapidly quenched Zr2Co11-based alloys. AIP Adv. 2016;6(5): 056002. DOI: https://doi.org/https://doi.org/10.1063/1.4942556
  8. Lin Zhang, Zhaolong Xiang, Xiaodi Li, Engang Wang. Spinodal decomposition in Fe-25Cr-12Co alloys under the infl uence of high magnetic fi eld and the effect of grain boundary. Nanomaterials (Basel). 2018;8(8): 578. DOI: https://doi.org/10.3390/nano8080578
  9. Zayonchkovskiy V., Kyaw A. K., Milyaev, I., Perov N., Prokhorov I., Klimov A., Andreev A. Thin metal fi lms with dispersion-hardening magnetic layers of Fe–Cr–Co alloy. Kondensirovannye Sredy i Mezhfaznye Granitsy = Condensed Matter and Interphases. 2019;21(4): 505–518. DOI: https://doi.org/10.17308/kcmf.2019.21/2362 (In Russ., abstract in Eng.)
  10. Mirkin L. I. Spravochnik po rentgenostrukturnomu analizu polikristallov [Polycrystal X-ray Analysis Handbook]. Moscow: Fizmatgiz Publ.; 1961. 863 p. (in Russ.)
  11. NanoFocus website. Available at: https://m.nanofocus.de/en/ (in Russ.)
  12. ООО “GEO-NDT” website. Available at:  https://www.geo-ndt.ru/pribor-6855-rentgenoflyorescentniianalizator-metekspert.htm (in Russ.)
  13. Spravochnik po cvetnym metallam [Handbook of non-ferrous metals]. Available at: https://libmetal.ru/index.htm (in Russ.)
  14. Website “All About Metallurgy”. Available at:  http://metal-archive.ru/vanadiy/955-mehanicheskiesvoystva-vanadiya.html (in Russ.)
  15. Gromov D. G. Mochalov A. I., Sulimin A. D., Shevyakov V. I. Metallizaciya ul’trabol’shih integral’nyh skhem [Ultra-Large Integrated Circuit Metallization]. Moscow: BINOM Publ.; 2012. 277 p. (In Russ.)
  16. Lyakishev N. P., Bannyh O. A., Rohlin L. L. Diagrammy sostoyaniya dvojnyh metallicheskih sistem: Spravochnik v trekh tomah [State Charts of double metal systems: A Handbook in three volumes]. Moscow: Mashinostroenie Publ.; 1997. 872 p. (In Russ.)
  17. Kekalo I. B., Samarin B. A. Fizicheskoe metallovedenie precizionnyh splavov. Splavy s osobymi magnitnymi svojstvami [Physical metallurgy of precision alloys. Special magnetic alloys]. Moscow: Metallurgiya Publ.; 1989. 496 p. (In Russ.)
  18. GOST 24897-81. Materialy magnitotverdye deformiruemye [Solid magnetic deformed materials. Marks]. Moscow: Izdatel’stvo standartov Publ.; 1981. 21 p. (In Russ.)
  19. Bragg W. L. The diffraction of short electromagnetic waves by a crystal. Proceedings of the Cambridge Philosophical Society, 17, 43–57 (1913). Communicated by Professor Sir J. J. Thomson. Read 11 November 1912. In: X-ray and Neutron Diffraction. Elsevier; 1966. p. 19–125. DOI: https://doi.org/10.1016/b978-0-08-011999-1.50015-820.
  20. Kremnij. Fizicheskaya enciklopediya. Gl. red. A. M. Prohorov. [Silicon. Physical encyclopedia. A. M. Prokhorov (ed.)]. Moscow: Sovetskaya enciklopediya Publ.; 1990. 704 p. (In Russ.)
  21. Vompe T. N., D’yakonova N., Milyaev I., Prutskov M. Kinetics of у-phase formation in a strain aging hard magnetic Fe-33% Cr-12% Co-2% Cu alloy. Russian Metallurgy (Metally). 2012;(1): 55–57. DOI: https://doi.org/10.1134/s0036029512010168
  22. Generalova K. N., Ryaposov I. V., Shacov A. A. The powder alloys of Fe-Cr-Co system heat-treated in the “ridge” region. Letters on Materials. 2017; 7(2): 133–136. DOI:  https://doi.org/10.22226/2410-3535-2017-2-133-136 (In Russ., abstract in Eng.)
  23. Med’. Fizicheskaya enciklopediya [Copper. Physical Encyclopedia]. Moscow: Sovetskaya enciklopediya Publ.; 1992. 672 p. (In Russ.)
  24. International Centre for Diffraction Data (ICDD). Available at: www.icdd.com
  25. Kozvonin V. A., Shacov A. A., Ryaposov I. V. Kozvonin V. A., Shatsov A. A., Ryaposov I. V. Multicomponent concentration-inhomogeneous alloys of Fe-Cr-Co-Si-B with high density. Bulletin PNRPU. Mechanical engineering, materials science. 2016. 18(4): 188–202. DOI: https://doi.org/10.15593/2224-9877/2016.4.14 (In Russ., abstract in Eng.)

Downloads

Download data is not yet available.

Author Biographies

Vyacheslav S. Zayonchkovskiy, aObninsk Institute for Nuclear Power Engineering (OINPE) - a branch of National Research Nuclear University MEPhI, 1 Studgorodok, Obninsk 249040, Kaluga region, Russian Federation

PhD in Physics and Mathematics, Associate Professor, Department of Materials Science and Chemistry, Kaluga branch of Bauman Moscow State Technical University (national research university), Kaluga, Russian Federation; e-mail: zajonc4340@gmail.com.

Irina A. Antoshina, Kaluga branch of Bauman Moscow State Technical University (national research university), 2 Bazhenova str., Kaluga 248000, Russian Federation

PhD in Physics and Mathematics, Associate Professor, Institute of Laser and Plasma Technologies, Obninsk Institute for Nuclear Power Engineering (OINPE) - a branch of the National Research Nuclear University MEPhI, Obninsk, the Kaluga region, Russian Federation; e-mail: antoshina_irina@mail.ru.

Kyaw Kyaw Aung, aObninsk Institute for Nuclear Power Engineering (OINPE) - a branch of National Research Nuclear University MEPhI, 1 Studgorodok, Obninsk 249040, Kaluga region, Russian Federation

postgraduate student, Kaluga branch of Bauman Moscow State Technical University (national research university), Kaluga, Russian Federation

Evgenij I. Isaev, Kaluga branch of Bauman Moscow State Technical University (national research university), 2 Bazhenova str., Kaluga 248000, Russian Federation

PhD in Physics and Mathematics, Associate Professor, Institute of Laser and Plasma
Technologies, Obninsk Institute for Nuclear Power Engineering (OINPE) - a branch of National Research
Nuclear University MEPhI, Obninsk, the Kaluga region, Russian Federation; e-mail: e.isaev87@gmail.com.

Igor’ M. Milyaev, Baikov Institute of Metallurgy and Materials Science, RAS, 49 Leninsky prospekt, Moscow 119334, Russian Federation

DSc in Physics and Mathematics, leading research fellow, Baikov Institute of Metallurgy and Materials Science, RAS, Moscow, Russian Federation.

Published
2020-03-20
How to Cite
Zayonchkovskiy, V. S., Antoshina, I. A., Aung, K. K., Isaev, E. I., & Milyaev, I. M. (2020). X-ray Diffraction Analysis of Thin Metal Films with Magnetic Layers of Fe-Cr-Co Alloy. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2529
Section
Статьи