Computer Simulation of Sorption Interactions of L-Arginine and L-Lysine with Carbon Nanotubes

Keywords: carbon nanotubes, amino acids, computer simulation, adsorption.

Abstract

Carbon nanotubes (CNTs) are a new class of nanomaterials with a high potential for different technological applications. The prospects of using them in biomedicine is associated with the ability of CNTs to cross the cell’s membrane without being impaired, which determines the significance of the study of the interactions of CNTs with biologically active substances, especially amino acids. This work presents a computer simulation of the structure and characteristics of arginine (lysine) – single-wall carbon nanotube (CNT) systems using the B3LYP/6-31G(d,p) density functional theory with GD3 dispersion correction. We calculated the energies of adsorption, dipole moments, total charge on the amino acid and nanotube atoms, and the smallest distances from the amino acid atoms to the CNT. Taking into account the dispersion correction, which is almost absent in scientific literature, allows more accurate calculations of the energies of adsorption of amino acids on CNT to be obtained as compared to the existing calculations due to the high polarizability of CNTs. We considered scenarios with the amino acid position on the open end and on the external and internal lateral surfaces of the CNT. The calculated series of adsorption energies satisfies the conditions Eend > Einside > Elateral. This is due to the fact that when the amino acid is
placed on the external lateral surface of a CNT the sorbate interacts with a part of the lateral surface of the tube. When it is placed inside the CNT the sorbate interacts with the whole surface through van der Waals forces and when the sorbate is placed on the end of the sorbent a covalent bond is formed between them. The formation of the covalent bond on the open end of the CNT is due to the higher electron density near the ends of the nanotube as compared to the external and internal lateral surfaces of the tube. An explanation is given of the mechanisms of adsorption and enhancement of the antibacterial action of the CNT functionalised by arginine and lysine, as compared to nonfunctionalised CNTs.

 

 

 

REFERENCES

1. Rakov E. G. Carbon nanotubes in new materials.
Russian Chemical Reviews. 2013;82(1): 27–47. DOI:
https://doi.org/10.1070/rc2013v082n01abeh004227
2. Rakov E. G. Materials made of carbon nanotubes.
The carbon nanotube forest. Russian Chemical Reviews.
2013;82(6): 538–566. DOI: https://doi.org/10.1070/rc2013v082n06abeh004340
3. Dai H., Hafner J., Rinzler A., Colbert D.,
Smalley R. Nanotubes as nanoprobes in scanning probe
microscopy. Nature. 1996;384(6605): 147–150. DOI:
https://doi.org/10.1038/384147a0
4. Zhai P., Isaacs J., Eckelman M. Net energy
benefits of carbon nanotube applications. Appl. Energy.
2016;173: 624–634. DOI: https://doi.org/10.1016/j.apenergy.2016.04.001
5. Tuchin A. V., Tyapkina V. A., Bityutskaya L. A.,
Bormontov E. N. Functionalization of capped ultrashort
single-walled carbon nanotube (5,5).
Kondensirovannye sredy i mezhfaznye granitsy =
Condensed Matter and Interphases. 2016;18(4): 568–
577. Available at: https://journals.vsu.ru/kcmf/article/view/167 (In Russ., abstract in Eng.)
6. Atlukhanova L. В., Dolbin I. V., Kozlov G. V. The
physical characteristics of nanofiller and interfacial
regions in nanocomposites with polymer/carbon
nanotubes and elastomeric vitreous matrix.
Kondensirovannye sredy i mezhfaznye granitsy =
Condensed Matter and Interphases. 2019;21(4): 471–
477, DOI: https://doi.org/10.17308/kcmf.2019.21/2358
(In Russ., abstract in Eng.)
7. Atlukhanova L. В., Dolbin I. V., Kozlov G. V. The
Physics of Interfacial Adhesion between a Polymer
Matrix and Carbon Nanotubes (Nanofi bers) in
Nanocomposites. Kondensirovannye sredy i mezhfaznye
granitsy = Condensed Matter and Interphases.
2020;22(2):190–196 DOI: https://doi.org/10.17308/kcmf.2020.22/2822
8. Nowack B., David R., Fissan H., Morris H.,
Shatkin J., Stintz M., Zepp R., Brouwer D. Potential
release scenarios for carbon nanotubes used in
composites. Environ. Int. 2013;59: 1–11. DOI: https://doi.org/10.1016/j.envint.2013.04.003
9. Kumar S., Rani R., Dilbaghi N., Tankeshwarab
K. Carbon nanotubes: a novel material for multifaceted
applications in human healthcare. The Royal Society
of Chemistry. 2017;46(1): 158–196. DOI: https://doi.org/10.1039/c6cs00517a
10. Liu Z., Chen K., Davis C., Sherlock S., Cao Q.,
Chen X., Dai H. Drug Delivery with Carbon Nanotubes
for In vivo Cancer Treatment. Drug delivery Cancer
Treatment Cancer Res. 2008;68: 6652–6660. DOI:
https://doi.org/10.1158/0008-5472.can-08-1468
11. Postnov V. N., Rodinkov O. V., Moskvin L. N.,
Novikov A. G., Bugaichenko A. S., Krokhina O. A. From
carbon nanostructures to high-performance sorbents
for chromatographic separation and preconcentration.
Russian Chemical Reviews 2016;85(2): 115–138. DOI:
https://doi.org/10.1070/rcr4551
12. Vardanega D., Picaud F. Detection of amino
acids encapsulation and adsorption with dielectric
carbon nanotube. Journal of Biotechnology. 2009;144(2):
96–101. DOI: https: //doi.org/10.1016/j.jbiotec.2009.08.016
13. Ganji M. Density functional theory based
treatment of amino acids adsorption on single-walled
carbon nanotubes. Diamond & Related Materials
2009;18(4): 662–668. DOI: https://doi.org/10.1016/j.diamond.2008.11.021
14. Roman T., Dino W., Nakanishi H., Kasai H.
Amino acid adsorption on single-walled carbon
nanotubes. Eur. Phys. Journal D. 2006;38(1): 117–120.
DOI: https://doi.org/10.1140/epjd/e2006-00043-1
15. He Z., Zhou J. Probing carbon nanotube–amino
acid interactions in aqueous solution with moleculardynamics simulations. Carbon. 2014;78: pp. 500–509.
DOI: https://doi.org/10.1016/j.carbon.2014.07.031
16. Garalleh H. A., Thamwattan, N., Cox B. J.,
Hill J. M. Encapsulation of L-histidine amino acid
inside single-walled carbon nanotubes. J. of Biomaterials
and Tissue Engineering. 2016;6(5): 362–369. DOI:
https://doi.org/10.1166/jbt.2016.1459
17. Tu Y., Lv M., Xiu P., Huynh T., Zhang M.,
Castelli M., … Zhou R. Destructive extraction of
phospholipids from Escherichia coli membranes by
graphene nanosheets. Physical and Chemical Properties
of Carbon Nanotubes. 2013;8(8): 594–601. DOI: https://doi.org/10.1038/nnano.2013.125
18. Piao L., Liu Q., Li Y. Interaction of amino acids
and single-wall Carbon nanotubes. J. Phys. Chem. C.
2012;116 (2): 1724–1731. DOI: https://doi.org/10.1021/jp2085318
19. Foresman J., Keith T., Wiberg K., Snoonian J.,
Frisch M. Influence of cavity shape, truncation of
electrostatics, and electron correlation on ab initio
reaction field calculations. J. Phys Chem. 1996;100(40):
16098–16104. DOI: https://doi.org/10.1021/jp960488j
20. Frisch. M. J., Trucks G. W., Schlegel H. B.
Gaussian 09. Gaussian. Wallingford CT Inc; 2009.
21. Butyrskaya E. V. Komp’yuternaya khimiya:
osnovy teorii i rabota s programmami Gaussian i
GaussView [Computer chemistry: basic theory and
work with Gaussian and GaussView programs].
Moscow: Solon-press; 2011. 224 p. (in Russ.)
22. Grimme S., Antony J., Ehrlich S. A consistent
and accurate ab initio parameterization of density
functional dispersion correction (DFT-D) for the 94
elements H-Pu. J. Chem. Phys, 2010, vol. 132, p. 154104.
DOI: https://doi.org/10.1063/1.3382344
23. Butyrskaya E. V. , Zapr yagaev S. A. ,
Nechaeva L. S., Karpushin A. A., Izmailova E. A. Effect
of the calculation method and the basis set on the
structure and electric properties of (4,4) carbon
nanotubes with different lengths and open ends. .
Journal of Structural Chemistry. 2016;57(4): 688–694.
DOI: https://doi.org/10.15372/JSC20160403
24. Nechaeva L. S., Butyrskaya E. V., Zapryagaev S. A.
Computer simulation of size effects and adcorption
properties of one-wall carbon nanotubes (6,6). Russian
Journal of General Chemistry. 2016;86(7): 1208–1215.
DOI: https://doi.org/1010.1134/S1070363216070252
25. Zardini H. Enhanced antibacterial activity of
amino acids-functionalized multi walled carbon
nanotubes by a simple method. Biointerfaces. 2012;92:
196–202. DOI: https://doi.org/10.1016/j.colsurfb.2011.11.045

Downloads

Download data is not yet available.

Author Biographies

Elena V. Butyrskaya, Voronezh State University 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Full
Professor, Department of Analytical
Chemistry,Voronezh State University, Voronezh,
Russian Federation; e-mail: bev5105@yandex.ru.

Sergey A. Zapryagaev, Voronezh State University 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and
Mathematics, Full Professor, Voronezh State University,
Voronezh, Russian Federation; e-mail: zsa@cs.vsu.ru.

Ekaterina А. Izmailova, Joint Stock Company “Concern “Sozvezdie” 14 Plekhanovskaya str., Voronezh 394018, Russian Federation

technologist, Joint Stock
Company “Concern “Sozvezdie”, Voronezh, Russian
Federation; e-mail: ekaterina.izmajlova@mail.ru.

Stepan V. Artyshchenko, Voronezh State Technical University 84 ul. 20-Letiya Oktyabrya, Voronezh 394006, Russian Federation

PhD in Physics and
Mathematics, Associate Professor, Voronezh State
Technical University, Voronezh, Russian Federation;
e-mail: art.stepan@mail.ru

Published
2020-09-18
How to Cite
Butyrskaya, E. V., Zapryagaev, S. A., IzmailovaE. А., & Artyshchenko, S. V. (2020). Computer Simulation of Sorption Interactions of L-Arginine and L-Lysine with Carbon Nanotubes. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(3), 303-309. https://doi.org/10.17308/kcmf.2020.22/2960
Section
Статьи