Quantum Chemical Modelling of the Scandium Sub-Group Metal Endofullerenes

Keywords: endofullerenes, metallofullerenes, quantum chemical calculations, density functional theory, molecular symmetry, spin leakage.

Abstract

Endofullerenes with one or several metal atoms inside the carbon cage (metallofullerenes) are of considerable practical interest as promising basic materials for creating highly effective contrasting agents for magnetic resonance imaging (MRI) as well as antioxidant and anticancer drugs. These compounds can also be used in spintronics to build nanoscale electronic devices. In the framework of the density functional theory, this work presents a calculation of the structural, electronic, and thermodynamic characteristics of scandium sub-group metal endofullerenes with the number of encapsulated atoms from one to seven in the gaseous phase. The stable structures with symmetries Cs, C2, C3, and Ci, were described. They
correspond to the positions of the metal atoms inside the fullerene cage. The theoretical limit for the number of metal atoms at which the endofullerene structure remains stable is six atoms for scandium, four for yttrium, and three for lanthanum. The calculations showed that the most stable structures are the ones with two and three encapsulated atoms.
The relationship between the number of encapsulated atoms and the nature of electron density distribution were described. The total charge on the encapsulated metal cluster is positive for Me@C60 – Me3@C60 compounds, weakly positive for Me4@C60 (some of the atoms have negative charge), and negative for Me5C60 – Me6@C60 compounds. The spin leakage effect was described for the structures with a doublet spin state. As for the endofullerenes with three and more encapsulated atoms, this effect is insignificant, which makes the creation of contrasting agents for MRI based on them impractical.

 

 

 

REFERENCES

1. Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F.,
Smalley R. E. C60: Buckminsterfullerene. Nature.
1985;318(6042): 162–163. DOI: https://doi.org/10.1038/318162a0
2. Kratschmer W., Lamb L. D., Fostiropoulos K.,
Huffman D. R. Solid C60: a new form of carbon. Nature.
1990;347(6291): 354–358. DOI: https://doi.org/10.1038/347354a0
3. Buchachenko A. L. Compressed atoms. J. Phys.
Chem. B. 2001;105(25): 5839–5846. DOI: https://doi.org/10.1021/jp003852u
4. Koltover V. K., Bubnov V. P., Estrin Y. I.,
Lodygina V. P., Davydov R. M., Subramoni M.,
Manoharan P. T. Spin-transfer complexes of endohedral
metallofullerenes: ENDOR and NMR evidences. Phys.
Chem. Chem. Phys. 2003;5(13): 2774–2777. DOI:
https://doi.org/10.1039/b302917d
5. Raebiger J. W., Bolskar R. D. Improved production
and separation processes for gadolinium
metallofullerenes. J. Phys. Chem. C. 2008;112(17):
6605–6612. DOI: https://doi.org/10.1021/jp076437b
6. Gaussian 09, Revision D.01. M. J. Frisch,
G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson,
H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino,B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-
Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe ,
V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, K. Throssell, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,
E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
J. M. Millam, M. Klene, C. Adamo, R. Cammi,
J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford
CT, 2016. Available at: http://gaussian.com/g09citation
7. Neese F. The ORCA program system. WIREs
Computational Molecular Science. 2012;2(1): 73–78.
DOI: https://doi.org/10.1002/wcms.81
8. Laikov D. N., Ustynyuk Y. A. PRIRODA-04: a
quantum-chemical program suite. New possibilities
in the study of molecular systems with the application
of parallel computing. Russian Chemical Bulletin.
2005;54(3): 820–826. DOI: https://doi.org/10.1007/s11172-005-0329-x
9. Chandrasekharaiah M. S., Gingerich K. A.
Chapter 86 Thermodynamic properties of gaseous
species. In: Handbook on the Physics and Chemistry of
Rare Earths. 1989;12: 409–431. DOI: https://doi.org/10.1016/s0168-1273(89)12010-8
10. Kohl F. J., Stearns C. A. Vaporization
thermodynamics of yttrium dicarbide–carbon system
and dissociation energy of yttrium dicarbide and
tetracarbide. J. Chem. Phys., 1970;52(12): 6310–6315.
DOI: https://doi.org/10.1063/1.1672942
11. Gingerich K. A., Nappi B. N., Pelino M.,
Haque R. Stability of complex dilanthanum carbide
molecules. Inorganica Chimica Acta. 1981;54: L141–
L142. DOI: https://doi.org/10.1016/s0020-1693(00)95414-8
12. Hedberg K., Hedberg L., Bethune D. S.,
Brown C. A., Dorn H. C., Johnson R. D., de Vries M. S.
Bond lengths in free molecules of buckminsterfullerene,
C60, from gas-phase electron diffraction. Science.
1991;254(5030): 410–412. DOI: https://doi.org/10.1126/science.254.5030.410
13. Bethune D. S., Meijer G., Tang W. C., Rosen H. J.,
Golden W. G., Seki H., Brown C. F., de Vries M. S.
Vibrational Raman and infrared spectra of
chromatographically separated C60 and C70 fullerene
clusters Chem. Phys. Lett., 1991; 179(1–2): 181–186.
DOI: https://doi.org/10.1016/0009-2614(91)90312-w
14. Emsley J. Elements. Moscow: Mir Publ.; 1993. 256 p. (in Russ.)
15. Rakov E. G. Nanotrubki i fullereny [Nanotubes
and Fullerenes]. Moscow: Logos Publ.; 2006. 376 p. (in Russ.)
16. Eletskii A. V., Smirnov V. M. Fullerenes.
Phys. Usp. 1993;36(3): 202–224. Available at: https://ufn.ru/ru/articles/1993/2/b/

Downloads

Download data is not yet available.

Author Biographies

Dmitrii A. Machnev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student at the
Department of Physical Chemistry, Voronezh State
University, Voronezh, Russian Federation; e-mail:
machnev.dmitry@gmail.com.

Igor V. Nechaev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Chemistry, Assistant of the
Department of Physical Chemistry, Voronezh State
University, Voronezh, Russian Federation; e-mail:
nechaev_iv@chem.vsu.ru.

Alexander V. Vvedenskii, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry,
Professor, Professor of the Department of Physical
Chemistry, Voronezh State University, Voronezh,
Russian Federation; e-mail: alvved@chem.vsu.ru.

Oleg A. Kozaderov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Associate
Professor, Head of the Department of Physical
Chemistry, Voronezh State University, Voronezh,
Russian Federation; e-mail: kozaderov@vsu.ru.

Published
2020-09-23
How to Cite
Machnev, D. A., Nechaev, I. V., Vvedenskii, A. V., & Kozaderov, O. A. (2020). Quantum Chemical Modelling of the Scandium Sub-Group Metal Endofullerenes. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(3), 360-372. https://doi.org/10.17308/kcmf.2020.22/2997
Section
Статьи