Zinc-nickel alloy coatings: electrodeposition kinetics, corrosion, and selective dissolution. A review

Keywords: electrodeposition, kinetics, zinc-nickel coatings, ammonium chloride electrolyte, glycine, current efficiency, corrosion, selective dissolution, voltammetry, chronoamperometry


A review of the literature is devoted to the patterns of the electrodeposition of zinc-nickel alloys including the kinetics of cathodic reduction of zinc, nickel, and zinc-nickel alloys in ammonium chloride, sulphate, and glycinate deposition electrolytes. We studied the data on the effectiveness of the corrosion resistance of zinc-nickel coatings and summarised the principal patterns of selective dissolution of the Zn-Ni alloys. The role of the addition of glycine to an ammonium chloride deposition electrolyte was determined in the modification of the morphological and anticorrosive properties of the coatings.


Download data is not yet available.

Author Biographies

Dmitrii V. Burliaev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student,
Department of Physical Chemistry, Faculty of
Chemistry, Voronezh State University, Voronezh,
Russian Federation; e-mail: dimn0@yandex.ru.

Oleg A. Kozaderov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Head of the
Department of Physical Chemistry, Faculty of
Chemistry, Voronezh State University, Voronezh,
Russian Federation; e-mail: ok@chem.vsu.ru.

Polina Volovitch, PSL University, CNRS-Chimie ParisTech, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, Paris, France

Professor,, PSL University,
CNRS-Chimie ParisTech, Institut de Recherche de
Chimie Paris, Paris, France; e-mail: polina.volovitch@chimieparistech.psl.eu.


Anwar S., Khan F., Zhang Y., Caines S. Optimization of zinc-nickel film electrodeposition for better corrosion resistant characteristics. The Canadian Journal of Chemical Engineering. 2019;97(9): 2426–2439. https://doi.org/10.1002/cjce.23521

Fedi B., Gigandet M. P., Hihn J. Y., Mierzejewski S. Structure determination of electrodeposited zincnickel alloys: thermal stability and quantificationusing XRD and potentiodynamic. Electrochimica Acta. 2016;215: 652–666. https://doi.org/10.1016/j.electacta.2016.08.141

Conde A., Arenas M. A., Damborenea J. J. Electrodeposition of Zn–Ni coatings as Cd replacement for corrosion protection of high strength steel. Corrosion Science. 2011;53(4): 1489–1497. https://doi.org/10.1016/j.corsci.2011.01.021

Maizelis A., Bairachny B. Voltammetric Analysis of phase composition of Zn-Ni alloy thin films electrodeposited from weak alkaline polyligand electrolyte. Journal of Nano- and Electronic Physics. 2017;9(5): 7. https://doi.org/10.21272/jnep.9(5).05010

Blejan D., Muresan L. M. Corrosion behavior of Zn-Ni-Al2O3 nanocomposite coatings obtained by electrodeposition from alkaline electrolytes. Materials and Corrosion. 2013;64(5): 433–438. https://doi.org/10.1002/maco.201206522

Nash P. Phase diagrams of binary nickel alloys. USA: ASM International; 1991. 394 p.

Liu X. D. Effect of nickel pre-plating on the plating of Zn-Ni alloy coating on stainless steel substrate. In: 2nd Annual International Conference on Advanced Material Engineering, 15–17 April 2016, Wuhan. Wuhan, Hubei, China: Southwest University; 2016. p. 410–415. https://doi.org/10.2991/ame-16.2016.67

Huang K. L. Experiment study of the phase analysis on the Ni-Zn alloys. Physics Experimentation. 2010;30: 8–11. Available at: http://en.cnki.com.cn/Article_en/CJFDTotal-WLSL201004004.htm

Rajagopalan S. K. Characterization of electrodeposited Zn-Ni alloy coatings as a replacement for electrodeposited Zn and Cd coatings. Montreal: McGill University; 2012. 221 p.

Brooks I. Erb U. Hardness of electrodeposited microcrystalline and nanocrystalline gamma-phase Zn-Ni alloys. Scripta Mater. 2001;44(5): 853–858. https://doi.org/10.1016/S1359-6462(00)00680-1

Kozaderov O. A., Burlyaev D. V. Elektroosazhdenie tsink-nikelevykh splavov iz glitsin-soderzhashchego ammiachno-khloridnogo elektrolita [Electrodeposition of zinc-nickel alloys from a glycine-containing ammonium chloride electrolyte]. In: Physico-chemical processes in condensed media and interphase boundaries. 8th All-Russian Conference with international participation Voronezh, Russia, 8–11 October 2018. Voronezh: Nauchnaya kniga Publ.; 2018. pp. 118–119. Available at: https://w w w.elibrar y.ru/item.asp?id=36837752 (In Russ.)

El-Sayed A.-R., Mohran H. S., Abd El-Lateef H. M. Corrosion study of zinc, nickel, and zincnickel alloys in alkaline solutions by tafel plot and impedance techniques. Metallurgical and Materials Transactions A. 2012;43(2): 619–632. https://doi.org/10.1007/s11661-011-0908-4

Conrad H. A., Golden T. D., McGuire M. R., Zhou T., Coskun M. I. Improved corrosion resistant properties of electrochemically deposited zinc-nickel alloys utilizing a borate electrolytic alkaline solution. Surface & Coatings Technology. 2015;272: 50–57. https://doi.org/10.1016/j.surfcoat.2015.04.025

Maizelis A. Voltammetric analysis of phase composition of Zn-Ni alloy thin films electrodeposited under different electrolyze modes. In: 7th International Conference on Nanomaterials: Applications and Properties, 2017, Kharkiv. Kharkiv: Kharkiv Polytechnic Institute; 2017. p. 1. https://doi.org/10.1109/NAP.2017.8190373

Nayana O., Venkatesha T. V. Effect of ethyl vanillin on ZnNi alloy electrodeposition and its properties. Bulletin of Materials Science. 2014;37(5): 1137–1146. https://doi.org/10.1007/s12034-014-0054-x

Chouchane S. Microstructural analysis of low Ni content Zn alloy electrodeposited under applied magnetic field. Surface & Coatings Technology. 2007;201(14): 6212–6216. https://doi.org/10.1016/j.surfcoat.2006.11.015

Petrauskas A. Studies of phase composition of Zn–Ni alloy obtained in acetate-chloride electrolyte by using XRD and potentiodynamic stripping. Electrochimica Acta. 2005;50(5): 1189–1196. https://doi.org/10.1016/j.electacta.2004.07.044

Petrauskas A. Influence of Co2+ and Cu2+ on the phase composition of Zn–Ni alloy. Electrochimica Acta. 2006;51(27): 6135–6139. https://doi.org/10.1016/j.electacta.2006.01.064

Koura N., Suzuki Y., Idemoto I., Kato T., Matsumoto F. Electrodeposition of Zn–Ni alloy from ZnCl2–NiCl2–EMIC and ZnCl2–NiCl2–EMIC–EtOH ambient-temperature molten salts. Surface & Coatings Technology. 2003;169-170: 120–123. https://doi.org/10.1016/S0257-8972(03)00183-X

Lehmberg C. E. Composition and structure of thin electrodeposited zinc–nickel coatings. Surface & Coatings Technology. 2005;192(2-3): 269–277. https://doi.org/10.1016/j.surfcoat.2004.07.109

Aaboubi O. Magnetohydrodynamic analysis of silver electrocrystallization from a nitric and tartaric solution. Journal of the Electrochemical Society. 2004;151(2): 112. https://doi.org/10.1149/1.1635829

Uhlemann M. Electrochemical deposition of Cu under superimposition of high magnetic fields. Journal of the Electrochemical Society. 2004;151(9): 598. https://doi.org/10.1149/1.1782991

Hajjami A. E. Characterization of thin Zn–Ni alloy coatings electrodeposited on low carbon steel. Applied Surface Science. 2007;254(2): 480–489. https://doi.org/10.1016/j.apsusc.2007.06.016

Feng Z., Li Q., Zhang J., Tang P., Song H., An M. Electrodeposition of nanocrystalline Zn–Ni coatings with single gamma phase from an alkaline bath. Surface & Coatings Technology. 2015;270: 47–56. https://doi.org/10.1016/j.surfcoat.2015.03.020

Shekhanov R. F., Gridchin, S. N., Balmasov A. V. Electrodeposition of zinc–nickel alloys from ammonium oxalate electrolytes. Russian Journal of Electrochemistry. 2018;54(4): 355–362. https://doi.org/10.1134/S1023193518040079

Garcia J. R., Lago D. C. B., Senna L. F. Electrodeposition of cobalt rich Zn-Co alloy coatings from citrate bath. Materials Research. 2014;17(4): 947–957. https://doi.org/10.1590/S1516-14392014005000096

Faid H., Mentar L., Khelladi M. R., Azizi A. Deposition potential effect on surface properties of Zn–Ni coatings. Surface Engineering. 2017;33(7): 529–535. https://doi.org/ 10.1080/02670844. 2017.1287836

Fashu S., Gu C. D., Wang X. L., Tu J. P. Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a deep eutectic solvent. Surface & Coatings Technology. 2014;242: 34–41. https://doi.org/10.1016/j.surfcoat.2014.01.014

Chernaya E. V., Bobrikova I. G. Zakonomernosti elektroosazhdeniyasplavatsink–nikel’vammiakatnykh elektrolitakh [Regularities of the electrodeposition of zinc-nickel alloy in ammoniacal electrolytes]. Tekhnicheskie nauki. 2011;(5): 112. Available at: https://cyberleninka.ru/article/n/zakonomernosti-elektroosazhdeniya-splava-tsinknikel-v-ammiakatnyh elektrolitah (In Russ.)

Nakano H., Arakawa S., Oue S., Kobayashi S. Electrodeposition behavior of Zn–Ni alloys from an alkaline zincate solution containing ethylenediamine. ISIJ International. 2013;53(10): 1864–1870. https://doi.org/10.2355/isijinternational.53.1864

Byk T. V., Gaevskaya T. V., Tsybulskaya L. S. Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings. Surface & Coatings Technology.2008;202(24): 5817–5823. https://doi.org/10.1016/j.surfcoat.2008.05.058

Conrad H. A., Corbett J. R., Golden T. D. Electrochemical deposition of g-phase zinc-nickel alloys from alkaline solution. Journal of the Electrochemical Society. 2012;159(1): 29–32. https://doi.org/10.1149/2.027201jes

Mosavat S. H., Bahroloroom M. E., Shariat M. H. Electrodeposition of nanocrystalline Zn–Ni alloy from alkaline glycinate bath containing saccharin as additive. Applied Surface Science. 2011;257(20): 8311–8316. https://doi.org/10.1016/j.apsusc.2011.03.017

Muresan L. M. Zn-Ni alloy coatings from alkaline bath containing triethanolamine. Influence of additives. Studia Universitatis Babes-Bolyai Chemia. 2010;55(1): 37–43. Available at: https://www.researchgate.net/publication/235654567_Zn-Ni_alloy_coatings_from_alkaline_bath_containingtriethanolamine_influence_of_additives

Soares M. E., Souza C. A. C., Kuri S. E. Corrosion resistance of a Zn–Ni electrodeposited alloy obtained with a controlled electrolyte flow and gelatin additive. Surface & Coatings Technology. 2006;201(6): 2953–2959. https://doi.org/10.1016/j.surfcoat.2006.06.006

Oliveira E. M., Carlos I. A. Chemical, physical and morphological characterization of ZnNi films electrodeposited on 1010 steel substrate from acid baths containing polyalcohol. Surface & Coatings Technology. 2011;206(2): 250–256. https://doi.org/10.1016/j.surfcoat.2011.06.061

Oliveira E. M., Carlos I. A. Study of the effect of mannitol on ZnNi alloy electrodeposition from acid baths and on the morphology, composition, and structure of the deposit. Journal of Applied Electrochemistry. 2009;39(10): 1849–1856. https://doi.org/10.1007/s10800-009-9888-0

Burlyaev D. V., Kozaderov O. A., Tinaeva A. E., Tinaeva K. E. Elektroosazhdenie tsink-nikelevykh pokrytii iz glitsin-soderzhashchego ammiachnokhloridnogo elektrolita [Electrodeposition of zincnickel coatings from glycine-containing ammonium chloride electrolyte]. Protection of Metals and Physical Chemistry of Surfaces. 2020;56(3): 301–308. https://doi.org/10.31857/S0044185620030079 (In Russ.)

Thangaraj V., Chitharanjan Hegde A. Electrodeposition and compositional behaviour of Zn-Ni alloy. Indian Journal of Chemical Technology. 2007;14(3): 246–252. Available at: http://nopr.niscair.res.in/handle/123456789/1116

Bajat J. B. Protective properties of epoxy coatings electrodeposited on steel electrochemically modified by Zn–Ni alloys. Progress in Organic Coating. 2004;49(3): 183–196. https://doi.org/10.1016/j.porgcoat.2003.09.019

Li G. Y. Investigation of nanocrystalline zinc–nickel alloy coatings in an alkaline zincate bath. Surface & Coatings Technology. 2005;191(1): 59–67. https://doi.org/10.1016/j.surfcoat.2004.04.062

Ghaziof S. Electrodeposition of single gamma phased Zn–Ni alloy coatings from additive-free acidic bath. Applied Surface Science. 2014;311(30): 635–642. https://doi.org/10.1016/j.apsusc.2014.05.127

Lotfi N., Aliofkhazraei M., Rahmani H., Barati Darband Gh. Zinc–nickel alloy electrodeposition: characterization, properties, multilayers and composites. Protection of Metals and Physical Chemistry of Surfaces. 2018;54: 1102–1140. Available at: https://www.researchgate.net/publication/329246287_Zinc-Nickel_Alloy_Electrodeposition_Characterization_Properties_Multilayers_and_Composites

Grilikhes S. Ya., Tikhonov K. I. Elektroliticheskie i khimicheskie pokrytiya. Teoriya i praktika [Electrolytic and chemical coatings. Theory and practice.]. Leningrad: Khimiya Publ.; 1990. pp. 113–125. (In Russ.)

Minin I. V., Solovyeva N. D. Kinetics of zinc electroreduction from the sulfate electrolyte in the presence of surfactant additives. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2013;69(1): 57–62. Available at: https://cyberleninka.ru/article/n/kinetika-elektrovosstanovleniya-tsinka-iz-sulfatnogoeektrolita-v-prisutstvii-dobavok-pav (In Russ.)

Pchelintseva Yu. V. Kineticheskie zakonomernosti elektroosazhdeniya tsinka iz khlorammoniinogo elektrolita [Kinetic regularities of zinc electrodeposition from chlorammonium electrolyte]. Abstract of thesis Cand. Chem. Sci. Saratovskii gosudarstvennyi tekhnicheskii universitet; 2004. 20 p. (In Russ.)

Berezin N. B., Berezina T. N., Mezhevich Zh. V. Kinetika i mekhanizm vosstanovleniya kompleksov tsinka [Kinetics and mechanism of recovery of zinc complexes]. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014;17(23): 374–379. Available at: https://cyberleninka.ru/article/n/kinetika-i-mehanizmvosstanovleniya-kompleksov-tsinka (In Russ.)

Proskurkin E. V., Popovich V. A., Moroz A. T. Tsinkovanie: Spravochnik / pod red. E. V. Proskurkina [Zinc plating: A Handbook, E. V. Proskurkina (ed.)]. Moscow: Metallurgiya Publ.; 1988. 528 p. (In Russ.)

Raeissi K., Saatchi A., Golozar M. A. Nucleation and growth of zinc electrodeposited onto electropolished and mechanically polished steel surfaces. Transactions of the IMF. 2003;81(6): 186–189. https://doi.org/10.1080/00202967.2003.11871537

Trejo G., Ortega R., Meas Y. Nucleation and growth of zinc from chloride concentrated solutions. Journal of the Electrochemical Society. 1998;145(12): 4090–4097. https://doi.org/10.1149/1.1838919

Orinakova R., Streckova M. Comparison of chloride and sulphate electrolytes in nickel electrodeposition on a paraffin impregnated graphite electrode. Journal of Electroanalytical Chemistry. 2006;549(2): 152–159. https://doi.org/10.1016/j.jelechem.2006.05.031

Orinakova R., Turonova A., Kladenkova D., Galova M. Recent developments in the electrodeposition of nickel and some nickel-based alloys. Journal of Applied Electrochemistry. 2006;36: 957–972. https://doi.org/10.1007/s10800-006-9162-7

Palomar-Pardave M., Scharifker B. R., Arce E. M., Romero-Romo M. Nucleation and diffusion-controlled growth of electroactive centers. Reduction of protons during cobalt electrodeposition. Electrochimica Acta. 2005;50(24): 4736–4745. https://doi.org/10.1016/j.electacta.2005.03.004

Hosseini M. G. Electrochemical studies of Zn–Ni alloy coatings from non-cyanide alkaline bath containing tartrate as complexing agent. Surface & Coatings Technology. 2008;202(13): 2897–2904. https://doi.org/10.1016/j.surfcoat.2007.10.022

Elkhatabi F. Chemical and phase compositions of zinc + nickel alloys determined by stripping techniques. Journal of Electroanalytical Chemistry. 1996;404(1): 45–53. https://doi.org/10.1016/0022-0728(95)04359-4

Elkhatabi F. Dependence of coating characteristics on deposition potential for electrodeposited Zn-Ni alloys. Electrochimica Acta. 1999;44(10): 1645–1653. https://doi.org/10.1016/S0013-4686(98)00286-2

Abou-Krisha M. M. Electrochemical studies of zinc–nickel codeposition in sulphate bath. Applied Surface Science. 2005;252(4): 1035–1048. https://doi.org/10.1016/j.apsusc.2005.01.161

Abou-Krisha M. M., Rageh H. M., Matter E. A. Electrochemical studies on the electrodeposited Zn–Ni–Co ternary alloy in different media. Surface and Coatings Technology. 2008;202(15): 3739–3746. https://doi.org/10.1016/j.surfcoat.2008.01.015

Hegde A. C., Venkatakrishna K., Eliaz N. Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys. Surface and Coatings Technology. 2010;205(7): 2031–2041. https://doi.org/10.1016/j.surfcoat.2010.08.102

Tozar A., Karahan I. H., Structural and corrosion protection properties of electrochemically deposited nano-sized Zn–Ni alloy coatings. Applied Surface Science. 2014;318: 15–23. https://doi.org/10.1016/j.apsusc.2013.12.020

Damaskin B. B. Elektrokhimiya: uchebnik dlya vuzov [Electrochemistry: a textbook for universities]. Moscow: Khimiya Publ.; 2001. 624 p. (In Russ.)

Sapronova L. V., Sotskaya N. V., Dolgikh O. V. Kinetika elektroosazhdeniya nikelya iz kompleksnykh elektrolitov, soderzhashchikh aminokisloty [Kinetics of nickel electrodeposition from complex electrolytes containing amino acids]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases.

;15(4): 446–452. Available at: https://journals.vsu.ru/kcmf/article/download/933/1015 (In Russ.)

Sotskaya N. V. , Dolgikh O. V. Nickel electroplating from glycine containing baths with different pH. Protection of Metals. 2008;44(5): 479–486. https://doi.org/10.1134/s0033173208050123

Dolgikh O. V., Sotskaya N. V., Duyen Vu Thi, Kotlyarova E. A., Agapov B. L. Electroplating of catalytically active nickel coatings from baths of various anionic compositions. Protection of Metals and Physical Chemistry of Surfaces. 2009;45(6): 718–723. https://doi.org/10.1134/s2070205109060148

Bard A. J. Electrochemical Methods: Fundamentals and Applications. NY: John Wiley & Sons. Inc.; 2001. 833 p. 66. Dolgikh O. V., Sotskaya N. V., Sapronova L. V. Kinetika elektroosazhdeniya nikelya iz asparaginatnykh i suktsinatnykh elektrolitov [Kinetics of nickel electrodeposition from aspartate and succinate electrolytes]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2012;14(2): 175–181. Available at: http://www.kcmf.vsu.ru/resources/t_14_2_2012_006.pdf (In Russ.)

7. Ghaziof S., Kilmartin P.A. , G a o W. Electrochemical studies of sol-enhanced Zn–Ni–Al2O3 composite and Zn–Ni alloy coatings. Journal of Electroanalytical Chemistry. 2015;755: 63–70. https://doi.org/10.1016/j.jelechem.2015.07.041

Ibrahim M. A. M., Al Radadi R. M. Role of glycine as a complexing agent in nickel electrodeposition from acidic sulphate bath. International Journal of Electrochemical Science. 2015;10(6): 4946–4971. Available at: http://www.electrochemsci.org/papers/vol10/100604946.pdf

Sapronova L. V., Sotskaya N. V., Dolgikh O. V., Zorina A. V., Kushan E. V. Kinetika elektrokristallizatsii nikelya iz glitsinsoderzhashchikh elektrolitov [Kinetics of nickel electrocrystallization from glycine-containing electrolytes]. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2012;(2): 87–91. Available at: http://w w w.vestnik.vsu.ru/pdf/chembio/2012/02/2012-02-13.pdf (In Russ.)

Torabi M., Dolati A. A kinetic study on the electrodeposition of nickel nanostructure and its electrocatalytic activity for hydrogen evolution reaction. Journal of Applied Electrochemistry. 2010;40: 1941–1947. https://doi.org/10.1007/s10800-010-0170-2

Basavanna S., Naik Y. A. Electrochemical studies of Zn–Ni alloy coatings from acid chloride bath. Journal of Applied Electrochemistry. 2009;39: 1975–1982. https://doi.org/10.1007/s10800-009-9907-1

Tsay P., Hu C. C. Non-anomalous codeposition of iron-nickel alloys using pulse-reverse electroplating through means of experimental strategies. Journal of the Electrochemical Society. 2002;149(10): 492–497. https://doi.org/10.1149/1.1504718

Basavanna S., Naik Y. A. Study of the effect of new brightener on Zn–Ni alloy electrodeposition from acid sulphate bath. Journal of Applied Electrochemistry. 2011;41(5): 535–541.


Asseli R., Benaicha M., Derbal S., Allam M., Dilmi O. Electrochemical nucleation and growth of

Zn-Ni alloys from chloride citrate-based electrolyte. Journal of Electroanalytical Chemistry. 2019;847: 1–10.


Li C., Li X., Wang Z., Guo H. Mechanism of nanocrystalline nickel electrodeposition from novel citrate bath. Rare Metal Materials and Engineering. 2015;44(7): 1561–1567. https://doi.org/10.1016/S1875-5372(15)30093-X

Díaz-Morales O., Mostany J., Borrás C., Scharifker B. R. Current transient study of the kinetics of nucleation and diffusion-controlled growth of bimetallic phases. Journal of Solid State Electrochemistry. 2013;17: 345–351. https://doi.org/10.1007/s10008-012-1881-6

Pochkina S. Yu. Elektroosazhdenie splavov tsinka s nikelem i kobal’tom s povyshennymi antikorrozionnymi svoistvami iz sul’fatno-glitsinatnykh elektrolitov [Electrodeposition of zinc-nickel and cobalt alloys with enhanced anti-corrosion properties from sulfateglycinate electrolytes] Abstract of thesis Cand. Chem. Sci. Saratov State Technical University; 2020. 20 p. (In Russ.)

Selvaraju V., Thangaraj V. Influence of g-phase on corrosion resistance of Zn-Ni alloy electrodeposition from acetate electrolytic bath. Materials Research Express. 2018;5(5): 1–14. https://doi.org/10.1088/2053-1591/aabe64

Tian W. Study on corrosion resistance of electroplating zinc-nickel alloy coatings. Surface and Interface Analysis. 2009;41(3): 251–254. https://doi.org/10.1002/sia.3017

Abd El-Lateef H. M. Role of Ni content in improvement of corrosion resistance of Zn−Ni alloy in 3.5% NaCl solution. Part I: Polarization and impedance studies. Transactions of Nonferrous Metals Society of China. 2015;25(8): 2807–2816. https://doi.org/10.1016/S1003-6326(15)63906-1

Feng Z., Ren L., Zhang J., Yang P. Effect of additives on corrosion mechanism of nanocrystalline zinc-nickel alloys in an alkaline bath. RSC Advances. 2016;6(91): 1–47. https://doi.org/10.1039/C6RA18476F

Gavrila M. Corrosion behavior of zinc–nickel coatings, electrodeposited on steel. Surface & Coatings Technology. 2000;123(2-3): 164–172. https://doi.org/10.1016/S0257-8972(99)00455-7

Soleimangoli F., Hosseini S. A., Davoodi A., Mokhtari A., Alishahi M. Effect of NH4Cl on the microstructure, wettability and corrosion behavior of electrodeposited Ni–Zn coatings with hierarchical nano/microstructure. Surface & Coatings Technology. 2020; 394: 1–9. https://doi.org/10.1016/j.surfcoat.2020.125825

Baldwin K. R. The corrosion resistance of electrodeposited zinc-nickel alloy coatings. Corrosion Science. 1993;35(5-8): 1267–1272. https://doi.org/10.1016/0010-938X(93)90347-J

Rahsepar M. Corrosion study of Ni/Zn compositionally modulated multilayer coatings using electrochemical impedance spectroscopy. Corrosion Science. 2009;51(11): 2537–2543. https://doi.org/10.1016/j.corsci.2009.06.030

Rashmi D, Pavithra G. P., Praveen B. M., Devapal D. Electrodeposition of Zn–Ni monolithic coatings, characterization, and corrosion analysis. Journal of Failure Analysis and Prevention. 2020;20(5-8): 513–522. https://doi.org/10.1007/s11668-020-00848-3

Exbrayat L., Rébéré C., Ndong Eyame R., Steyer P., Creus J. Corrosion behavior in saline solution of pulsed-electrodeposited zinc-nickel-ceria nanocomposite coatings. Materials and Corrosion. 2017;68(10): 1129–1142. https://doi.org/10.1002/maco.201709419

Fashu S., Gu C., Zhang J., Huang M., Wang X., Tu J. Effect of EDTA and NH4Cl additives on electrodeposition of Zn−Ni films from choline chloride-based ionic liquid. Transactions of Nonferrous Metals Society of China. 2015;25(6): 2054–2064. https://doi.org/10.1016/S1003-6326(15)63815-8

Beheshti M., Ismail M.C., Kakooei S., Shahrestani S., Mohan G., Zabihiazadboni M. Influence of deposition temperature on the corrosion resistance of electrodeposited zinc-nickel alloy coatings. Materialwissenschaft und Werkstofftechnik. 2018;49(4): 472–482. https://doi.org/10.1002/mawe.201700284

Feng Z., Li D., Wang L., Sun Q., Lu P., Xing P., An M. Theoretical and experimental studies of 2,2-bipyridine for nanocrystalline zinc-nickel deposition. Ionics. 2019;25: 1857–1867. https://doi.org/10.1007/s11581-018-2786-x

Stein M., Ovens S.P., Pickers H. W., Weil K. G. Dealloying studies with electrodeposited zinc-nickel alloy films. Electrochimica Acta. 1998;43(1-2): 223–226. https://doi.org/10.1016/S0013-4686(97)00228-4

Ivaskevic E., Selskis A., Sudavicius A., Ramanauskas R. Dealloying of electrodeposited zincnickel alloy coatings. Chemija. 2001;12(3): 204–209. Available at: http://www.elibrary.lt/resursai/LMA/Chemija/C-204.pdf

Ding Y., Zhang J. Nanoporous metals for advanced energy technologies. Moosseedorf: Springer International Publishing Switzerland; 2016. 223 p. https://doi.org/10.1007/978-3-319-29749-1

El-Sayed A.-R., Mohran H. S., Abd El-Lateef H. M. Role of nickel alloying on anodic dissolution behavior of zinc in 3.5% NaCl solution. Part II: Potentiodynamic, potentiostatic and galvanostatic studies. Transactions of Nonferrous Metals Society of China. 2015;25(9): 3152–3164. https://doi.org/10.1016/S1003-6326(15)63946-2

Badawya W. A., Ismaila K. M., Fathib A. M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions. ElectrochimicaActa. 2005;50(18): 3603–3608. https://doi.org/10.1016/j.electacta.2004.12.030

Kozaderov O., Światowska J., Dragoe D., Volovitch P. Effect of Cr(III) passivation layer on surface modificationsof zinc-nickel coatings in chloride solutions. Journal of Solid State Electrochemistry. 2021:25(4): 1161–1173. https://doi.org/10.1007/s10008-021-04898-x

Marygina Yu. I., Kaluzhina S. A., Protasova I. V. Phase composition and morphology of Ni, Zn-alloy surface, electrodeposited from sulfate-ammonium solution Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(1): 93–101. DOI: https://doi.org/10.17308/kcmf.2018.20/481 (InRuss., abstract in Eng.)

Rouya E., Mallett J. J., Salvi P., Villa M., Begley M., Kelly R. G., Reed M., Zangari G. Nanoporous nickel by electrochemical dealloying. Transactions of the Materials Research Society of Japan. 2010;35(1): 23–26. https://doi.org/10.14723/tmrsj.35.23

McCue I., Benn E., Gaskey B., Erlebacher J. Dealloying and dealloyed materials. The Annual Review of Materials Research. 2016;46(1): 263–284. https://doi.org/10.1146/annurev-matsci-070115-031739

Gobal F., Faraji M. Fabrication of nanoporous nickel oxide by de-zincification of Zn–Ni/(TiO2‑nanotubes) for use in electrochemical supercapacitors. Electrochimica Acta. 2013;100: 133–139. https://doi.org/10.1016/j.electacta.2013.03.155

Balej J., Divisek J., Schmitz H., Mergel J. Preparation and properties of Raney nickel electrodes on Ni-Zn base for H2 and O2 evolution from alkaline solutions. Part II: Leaching (activation) of the Ni-Zn electrodeposits in concentrated KOH solutions and H2 and O2 overvoltage on activated Ni-Zn Raney electrodes. Journal of Applied Electrochemistry. 1992;22: 711–716. Available at: https://link.springer.com/content/pdf/10.1007%2FBF01027498.pdf

Katagiri A., Nakata M. Preparation of a high surface area nickel electrode by alloying and dealloying in a ZnCl2-NaCl Melt. Journal of the Electrochemical Society. 2003;150(9): 585–590. https://doi.org/10.1149/1.1595662

Wang T., Ren D., Huo Z., Song Z., Jin F., Chen M. Nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. Green Chemistry. 2016;19(3): 1–7. https://doi.org/10.1039/C6GC02866G

Zuo L., Li R., Jin Y., Xu H., Zhang T. Fabrication of three-dimensional nanoporous nickel by dealloying Mg-Ni-Y metallic glasses in citric acid solutions for high-performance energy storage. Journal of The Electrochemical Society. 2017;164(2): 348–354. https://doi.org/10.1149/2.1131702jes

Gan Y. X., Zhang Y., Gan J. B. Nanoporous metals processed by dealloying and their applications. AIMS Materials Science. 2018;5(6): 1141–1183. https://doi.org/10.3934/matersci.2018.6.1141

Luo X. K., Li R., Huang L., Zhang T. Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses. Corrosion Science. 2013;67: 100–108.


Hosseini M. G. Preparation, characterization, and application of alkaline leached Ni/Zn–Ni binary

coatings for electro-oxidation of methanol in alkaline solution. Journal of Applied Electrochemistry. 2012;42(3):

–162. https://doi.org/10.1007/s10800-012-0382-8

Cai J. Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity

and their excellent electrocatalytic activities for hydrogen evolution reaction. International Journal of

Hydrogen Energy. 2013;38(2): 934–941. https://doi.org/10.1016/j.ijhydene.2012.10.084

Herraiz-Cardona I., Ortega E., Perez-Herranz V. Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta. 2011;56(3): 1308–1315. https://doi.org/10.1016/j.electacta.2010.10.093

Singh H., Yadav R., Farooqui S. A., Dudnyk O., Sinha A.K. Nanoporous nickel oxide catalyst with uniform Ni dispersion for enhanced hydrogen production from organic waste. International Journal of Hydrogen Energy. 2019;44(36): 19573–19584. https://doi.org/10.1016/j.ijhydene.2019.05.203

Gao Y., Ding Y. Nanoporous metals for heterogeneous catalysis: following the success of Raney nickel. Chemistry—A European Journal. 2020;26(41): 8845–8856. https://doi.org/10.1002/chem.202000471

How to Cite
Burliaev, D. V., Kozaderov, O. A., & Volovitch, P. (2021). Zinc-nickel alloy coatings: electrodeposition kinetics, corrosion, and selective dissolution. A review. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(1), 3-15. https://doi.org/10.17308/kcmf.2021.23/3292

Most read articles by the same author(s)