Kinetics of Phase Transformations during Selective Dissolution of Cu5Zn8

Keywords: copper-zinc alloy, gamma phase, selective dissolution, phase transformation, surface development, heterogeneous nucleation.

Abstract

The study determined the kinetics of the selective anodic dissolution of the copper-zinc intermetallic compound Cu5Zn8 (gamma-phase) in an acetate buffer solution. Microscopic and X-ray analysis methods demonstrated the selective nature of the corrosive dissolution of Cu5Zn8. The dissolution results in the dezincification of the intermetalic compound and morphological development of its surface accompanied by the formation of the copper phase. A theoretical model of the transition of the electrode surface to the critical state together with the experimental concentration dependencies of the critical potential and critical overvoltage demonstrated that the dissolution of zinc from Cu5Zn8 is most probably limited
by the non-stationary diffusion mass-transfer in the solid phase of the intermetallic compound. The study also demonstrated that the phase transformation during the overcritical selective anodic dissolution of the gamma-phase of Cu5Zn8 in an acetate environment accelerates following the growth of the anodic potential and is controlled by the surface diffusion of adatoms towards the three-dimensional nucleus of the copper phase with instantaneous nucleation.

 

 

 

REFERENCES

1. Francis R. Corrosion of Copper and its Alloys –
A Practical Guide for Engineers. Houston (USA): NACE
International, 2010. 388 p.
2. Troiani H. E., Baruj A. In situ optical microscopy
study of a phase transformation induced by the
dezincification of beta Cu–Zn. Materials Science and
Engineering A. 2007;454–455: 441-445. DOI: https://doi.org/10.1016/j.msea.2006.11.092
3. Sun Y., Ren Y. New preparation method of porous
copper powder through vacuum dealloying. Vacuum.
2015;122(A): 215–217. DOI: https://doi.org/10.1016/j.vacuum.2015.09.031
4. Sun Y., Ren Y., Yang K. New preparation method
of micron porous copper through physical vacuum
dealloying of Cu–Zn alloys. Materials Letters. 2016;165:
1–4. DOI: https://doi.org/10.1016/j.matlet.2015.11.102
5. Murzin S. P. Razrabotka sposobov intensifikatsii
formirovaniya nanoporistykh struktur metallicheskikh
materialov selektivnoi lazernoi sublimatsiei
komponentov splavov [Development of methods for
intensifying the formation of nanoporous structures
of metallic materials by selective laser sublimation of
alloy components]. Komp’yuternaya optika [Computer
Optics]. 2011;35(2): 175–179. Available at: https://www.elibrary.ru/download/elibrary_16372944_
92770669.pdf(In Russ.)
6. Murzin S. P. Opredelenie uslovii obrazovaniya
nanoporistykh struktur metallicheskikh materialov
lazernym vozdeistviem [Determination of the
conditions for the formation of nanoporous structures
of metallic materials by laser exposure]. Vestnik
Samarskogo gosudarstvennogo aerokosmicheskogo
universiteta im. akademika S. P. Koroleva (natsional’nogo
issledovatel’skogo universiteta) [Vestnik of Samara
University: Aerospace and Mechanical Engineering].
2014;5-2(47): 67–74. Available at: https://www.
elibrary.ru/download/elibrary_24041234_92964303.
pdf(In Russ.)
7. Landolt D. Corrosion and surface chemistry of
metals. Lausanne (Switzerland): EPFL Press, 2007.
632 p.
8. Marshakov I. K. Termodinamika i korroziya
splavov [Thermodynamics and corrosion of alloys].
Voronezh: izd-vo Voronezh. un-ta, 1983. 168 p. (In
Russ.).
9. Marshakov I. K., Vvedenskii A. V., Kondrashin
V. Yu., Bokov G. A. Anodnoe rastvorenie i
selektivnaya korroziya splavov [Anodic dissolution and
selective corrosion of alloys]. Voronezh: izd-vo
Voronezh. un-ta, 1988. 208 p. (In Russ.)
10. Selvaraj S., Ponmariappan S., Natesan M.,
Palaniswamy N. Dezincification of brass and its
control: an overview. Corrosion Reviews. 2003;21(1):
41–74. DOI: https://doi.org/10.1515/CORRREV.2003.21.1.41
11. Revie R. W. Uhlig’s Corrosion Handbook.
Hoboken (USA): Wiley, 2011. 1296 p. DOI: https://doi.org/10.1002/9780470872864
12. Burzyńska L., Maraszewska A., Zembura Z. The
corrosion of Cu-47.3 at% Zn brass in aerated 1.0 M
HCl. Corrosion Science. 1996;38(2): 337–347. DOI:
https://doi.org/10.1016/0010-938X(96)00132-1
13. Sohn S., Kang T. The effects of tin and nickel
on the corrosion behavior of 60Cu-40Zn alloys. J. Alloys
Compounds. 2002;335(1-2): 281–289. DOI: https://doi.org/10.1016/S0925-8388(01)01839-4
14. Assouli B., Srhiri A., Idrissi H. Characterization
and control of selective corrosion of a, b¢-brass by
acoustic emission. NDT & E International. 2003;36(2):
117–126. DOI: https://doi.org/10.1016/S0963-8695(02)00102-0
15. Newman R. C. Dealloying. In book: Shreir’s
Corrosion. Oxford: Elsevier, 2010. P. 801–809. DOI:
https://doi.org/10.1016/b978-044452787-5.00031-7
16. Erlebacher J. Dealloying of binary alloys evolution
of nanoporosity. In book: Dekker encyclopedia of
nanoscience and nanotechnology (chapter 320). N.-Y.
(USA): CRC Press, 2004. P. 893–902. DOI: https://doi.
org/10.1201/9781439834398.ch320
17. Qiu H.-J., Peng L., Li X., Xu H. T., Wang Y. Using
corrosion to fabricate various nanoporous metal
structures. Corrosion Science. 2015;92: 16–31. DOI:
https://doi.org/10.1016/j.corsci.2014.12.017
18. Marshakov I. K. Elektrokhimicheskoe povedenie
i kharakter razrusheniya tverdykh rastvorov i
intermetallicheskikh soedinenii [Electrochemical
behaviour and the nature of the destruction of solid
solutions and intermetallic compounds]. Korroziya i
zashchita ot korrozii (Itogi nauki i tekhniki. T. 1) [Corrosion
and corrosion protection (Results of science and technology.
V. 1)]. Мoscow: VINITI, 1971. p. 138–155. (In Russ.)
19. Marshakov I. K., Bogdanov V. P. Mekhanizm
izbiratel’noi korrozii mednotsinkovykh splavov
[Mechanism of selective corrosion of copper-zinc
alloys]. Zhurn. fiz. khim.[J. Phys. Chem.]. 1963;37(12):
2767–2769. (In Russ.)
20. Marshakov I. K., Vyazovikina N. V. Izbiratel’noe
rastvorenie b-latunei s fazovym prevrashcheniem v
poverkhnostnom sloe [Selective dissolution of b-brass
with phase transformation in the surface layer].
Zashchita metallov [Protection of metals]. 1978;14(4):
410–415. (In Russ.)
21. Zartsyn I. D., Vvedenskii A. V., Marshakov I. K.
Nonequilibrium behavior of the surface-layer in anodic
dissolution ofhomogeneous alloys. Russian Jornal of
Electrochemistry. 1994;30(4): 544–565. Available at:
https://elibrary.ru/item.asp?id=23828139
22. Zartsyn I. D., Vvedenskii A. V., Marshakov I. K.
Conversions of the noble component during selective
dissolution of anhomogeneous alloy in an active state.
Protection of Metals. 1991;27(1): 3–12. Available at:
https://elibrary.ru/item.asp?id=23951443
23. Zartsyn I. D., Vvedenskii A. V., Marshakov I. K.
Thermodynamics of nonequilibrium phase conversion
under selective dissolution of homogeneous binary
alloys. Protection of Metals. 1991;27(6): 883–891.
Available at: https://elibrary.ru/item.asp?id=12712615
24. Pickering H. W., Byrne P. J. On preferential
anodic dissolution of alloys in the low-current region
and the nature of the critical potential. J. Electrochem.
Soc. 1971;118(2): 209–215. DOI: https://doi.org/10.1149/1.2407969
25. Pickering H. W., Byrne P. J. Partial currents
during anodic dissolution of Cu–Zn alloys at constant
potential. J. Electrochem. Soc. 1969;116(11): 1492–
1496. DOI: https://doi.org/10.1149/1.2411582
26. Pickering H. W. Characteristic features of alloy
polarization curves. Corrosion Sci. 1983;23(10): 1107–1120. DOI :
https://doi.org/10.1016/0010-938X(83)90092-6
27. Kozaderov O. A., Vvedenskii A. V. Massoperenos
i fazoobrazovanie pri anodnom selektivnom rastvorenii
gomogennykh splavov [Mass transfer and phase
formation during anodic selective dissolution of
homogeneous alloys]. Voronezh: Nauchnaya kniga,
2014. 287 p. (In Russ.)
28. Wyckoff R. W. G. Crystal Structures. Vol. 1. N.-Y.
(USA): Interscience Publishers, 1963. p. 7–83.29. Galyus Z. Teoreticheskie osnovy elektrokhimicheskogo
analiza [Theoretical Foundations of
Electrochemical Analysis]. Мoscow: Mir, 1974. 256 p. (In Russ.)

Downloads

Download data is not yet available.

Author Biographies

Oleg A. Kozaderov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Associate
professor, Head of the Department of Physical
Chemistry, Faculty of Chemistry, Voronezh State
University, Voronezh, Russian Federation; e-mail:
ok@chem.vsu.ru

Dmitrii M. Taranov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student, Department of
Physical Chemistry, Faculty of Chemistry, Voronezh
State University, Voronezh, Russian Federation;
e-mail: taranovdm@list.ru.

Aleksander N. Krivoslykov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student,
Department of Physical Chemistry, Faculty of
Chemistry, Voronezh State University, Voronezh,
Russian Federation; e-mail: alexdwatson@mail.ru.

Sofia V. Borodkina, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student, Department of Physical
Chemistry, Faculty of Chemistry, Voronezh State
University, Voronezh, Russian Federation; e-mail:
boro-sonya@yandex.ru.

Published
2020-09-21
How to Cite
Kozaderov, O. A., Taranov, D. M., Krivoslykov, A. N., & Borodkina, S. V. (2020). Kinetics of Phase Transformations during Selective Dissolution of Cu5Zn8. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(3), 344-352. https://doi.org/10.17308/kcmf.2020.22/2965
Section
Статьи