Features of the corrosion of coatings based on zinc alloys: oxidation products and the selective dissolution of zinc. Review

Keywords: Zinc coatings, Corrosion, Selective dissolution, Simoncolleite, Hydrozincite


The literature review analyses and systematizes the results of corrosion studies of widely used anti-corrosion zinc coatings based on various binary systems Zn-Al, Zn-Mg, Zn-Fe, Zn-Ni, Zn-Co. The patterns of corrosion, the role of selective dissolution and corrosion products in increasing the corrosion resistance of coatings in neutral chloride-containing environments have been studied. The analysis shows that the corrosion rate depends on the chemical and phase composition of zinc coatings, which is due to differences in the corrosion behavior of the phase components of the alloys. Selective dissolution has an ambiguous effect on the corrosion resistance of coatings. On the one hand, the process of selective dissolution of zinc can be accompanied by the formation of corrosion cracks, which reduces the corrosion resistance of the
coating. On the other hand, a rough surface enriched with an electropositive alloying component is formed. As a result, roughness stimulates the deposition of a denser and more compact layer of corrosion products, which reduces the access of oxygen and other electrolyte components to the coating’s surface. Under certain conditions, a film of corrosion products can provide additional resistance to the corrosion process due to low electrical conductivity. With the uniform dissolution of coatings, both the co-precipitation of complex compounds of zinc and alloying metals and the doping of the product layer with oxides or hydroxides of alloying metals occur. This also results in increased compactness and reduced electrical conductivity, which increases the corrosion resistance of the coatings. The purpose of the article: an overview of the results
of studies of corrosion of zinc coatings, physical and chemical features of the formation and composition of the layer of corrosion products, the influence of corrosion products and selective dissolution on the corrosion resistance of coatings.

A review of the results of studies relating to the corrosion of zinc coatings was carried out, taking into account the formation of a protective layer of corrosion products and the selective dissolution of zinc. The corrosion of zinc coatings is influenced by the structure and phase composition of the coatings, the selective dissolution of zinc, as well as the nature of the layer of corrosion products. The corrosion resistance of zinc coatings increases if a compact layer of corrosion products with low electrical conductivity is formed. The selective dissolution of zinc can have a positive effect on its protective ability due to the formation of a rough surface, which promotes the deposition of a denser layer of corrosion products. In the case of the
uniform dissolution of zinc alloy coatings, alloying metals are able to integrate into the structure of zinc corrosion products, which makes the layer more compact and leads to a decrease in its electrical conductivity, significantly increasing the corrosion resistance of the coatings 


Download data is not yet available.

Author Biographies

Alexander I. Biryukov, Chelyabinsk State University, 129 ul. Br. Kashirinykh, Chelyabinsk 454001, Russian Federation

Сand. Sci. (Chem.), Assistant
Professor, Department of Analytical and Physical
Chemistry, Chelyabinsk State University (Chelyabinsk,
Russian Federation)

Oleg A. Kozaderov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Chem.), Senior
Researcher, Laboratory of organic additives for the
processes of chemical and electrochemical deposition
of metals and alloys used in the electronics industry,
Voronezh State University (Voronezh, Russian

Tanyana V. Batmanova, Chelyabinsk State University, 129 ul. Br. Kashirinykh, Chelyabinsk 454001, Russian Federation

Senior Lecturer of
Department of Analytical and Physical Chemistry
(Chelyabinsk, Russian Federation)


Falk T., Svensson J. E., Johansson L. G. The influence of CO2 and NaCl on the atmospheric corrosion of zinc: a laboratory study. Journal of the Electrochemical Society. 1998;145(9): 2993. https://doi.org/10.1149/1.1838753

Qu Q, Yan C., Wan Y., Cao C. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc. Corrosion Science. 2002;44(12): 2789–2803. https://doi.org/10.13. Qu Q, Li L., Bai W., Yan C., Cao C.Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc. Corrosion Science. 2005;47(11): 2832–2840. https://doi.org/10.1016/j.corsci.2004.11.010

Thierry D., Persson D., Luckeneder G., Stellnberger K. H. Atmospheric corrosion of ZnAlMg coated steel during long term atmospheric weathering at different worldwide exposure sites. Corrosion Science. 2019;148: 338–354. https://doi.org/10.1016/j.corsci.2018.12.033

Kaiser H. De-alloying and dissolution induced cracking of the Zinc-iron d phase. Materials and Corrosion. 1996;47(1): 34–41. https://doi.org/10.1002/maco.19960470106

Gilbert P. T. The nature of zinc corrosion products. Journal of The Electrochemical Society. 1952;99(1): 16–21. https://doi.org/10.1149/1.2779652

Odnevall Wallinder I., Leygraf C. A critical review on corrosion and runoff from zinc and zinc-based alloys in atmospheric environments. Corrosion. 2017;73(9): 1060–1077. https://doi.org/10.5006/2458

Lindström R., Svensson J. E., Johansson L. G. The atmospheric corrosion of zinc in the presence of NaCl the influence of carbon dioxide and temperature. Journal of the Electrochemical Society. 2000;147(5): 1751–1757. https://doi.org/10.1149/1.1393429

Hosking N. C., Ström M. A., Shipway P. H., Rudd C. D.. Corrosion resistance of zinc–magnesium coated steel. Corrosion Science. 2007;49(9): 3669–3695. https://doi.org/10.1016/j.corsci.2007.03.032

Graedel T. E. Corrosion mechanisms for zinc exposed to the atmosphere. Journal of the Electrochemical Society. 1989;136(4): 193–203. https://doi.org/10.1002/chin.198933345

Mouanga M., Berçot P., Rauch J. Y. Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions. Part I: Corrosion layer characterization. Corrosion Science. 2010;52(12): 3984–3992. https://doi.org/10.1016/j.corsci.2010.08.003

Liu Y., Li H., Li Z. EIS investigation and structural characterization of different hot-dipped zinc-based coatings in 3.5% NaCl solution. International Journal of Electrochemical Science. 2013;8: 7753–7767. https://doi.org/10.1016/s1452-3981(23)12843-4

Salgueiro Azevedo M., Allély C., Ogle K., Volovitch P.Corrosion mechanisms of Zn (Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate. Corrosion Science. 2015;90: 472–481. https://doi.org/10.1016/j.corsci.2014.05.014 .

Zhu F., Persson D., Thierry D., Taxen C. Formation of corrosion products on open and confined zinc surfaces exposed to periodic wet/dry conditions. Corrosion. 2000;56(12): 1256–1265. https://doi.org/10.5006/1.3280514

Azmat N. S., Ralston K. D., Muddle B. C., Cole I. S.Corrosion of Zn under acidified marine droplets. Corrosion Science. 2011;53(4): 1604–1615. https://doi.org/10.1016/j.corsci.2011.01.044

Yoo J. D., Volovitch P., Abdel Aal A., Allely C., Ogle, K.The effect of an artificially synthesized simonkolleite layer on the corrosion of electrogalvanized steel. Corrosion Science. 2013;70: 1–10. https://doi.org/10.1016/j.corsci.2012.10.024

Kania H., Mendala J., Kozuba J., Saternus M.Development of bath chemical composition for batch hot-dip galvanizing – A review. Materials. 2020;13(18): 4168. https://doi.org/10.3390/ma13184168

Persson D., Thierry D., LeBozec N. Corrosion product formation on Zn55Al coated steel upon exposure in a marine atmosphere. Corrosion Science. 2011;53(2): 720–726. https://doi.org/10.1016/j.corsci.2010.11.004

Vu T. N., Volovitch P., Ogle K. The effect of pH on the selective dissolution of Zn and Al from Zn–Al coatings on steel. Corrosion Science. 2013;67: 42–49. https://doi.org/10.1016/j.corsci.2012.09.042

Vu A. Q., Vuillemin B., Oltra R., Allély C. Cutedge corrosion of a Zn–55Al-coated steel: a comparison between sulphate and chloride solutions. Corrosion Science. 2011;53(9): 3016–3025. https://doi.org/10.1016/j.corsci.2011.05.048

Zhang X., Odnevall Wallinder I., Leygraf C. Atmospheric corrosion of Zn–Al coatings in a simulated automotive environment. Surface Engineering. 2018;34(9): 641–648. https://doi.org/10. 1080/02670844.2017.1305658

Zhang X., Odnevall Wallinder I., Leygraf C. Atmospheric corrosion of Zn–Al coatings in a simulated automotive

nvironment. Surface Engineering. 2018;34(9): 641–648. https://doi.org/10.1080/02670844.2017.1305658

Prosek T., Nazarov A., Bexell U., Thierry D., Serak J. Corrosion mechanism of model zinc– magnesium alloys in atmospheric conditions. Corrosion Science. 2008;50(8): 2216–2231. https://doi.org/10.1016/j.corsci.2008.06.008

Volovitch P., Allely C., Ogle K. Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel. Corrosion Science. 2009;51(6): 1251–1262. https://doi.org/10.1016/j.corsci.2009.03.005

Yao C., Chen W., Zhu T., Tay S. L., Gao W. A study on corrosion behaviour of magnetron sputtered Zn–Mg coating deposited onto electro-galvanized steel. Surface and Coatings Technology. 2014;249: 90–96. https://doi.org/10.1016/j.surfcoat.2014.03.055

Diler E., Rioual S., Lescop B., Thierry D., Rouvellou B. Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions. 016/s0010-938x(02)00076-8 Corrosion Science. 2012;65: 178–186.


Diler E., Lescop B., Rioual S., Nguyen Vien G., Thierry D., Rouvello B. Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS. Corrosion Science. 2014;79: 83–88. https://doi.org/10.1016/j.corsci.2013.10.029

Ishikawa T., Murai M., Kandori K., Nakayama T. Structure and composition of artificially synthesized rusts of Zn–Fe and Zn–Ti alloys. Corrosion Science. 2006;48: 3172–3185. https://doi.org/10.1016/j.corsci.2005.11.015

Duchoslav J., Truglas T., Groiß H., … Stifter D. Structure and chemistry of surface oxides on ZnMgAl corrosion protection coatings with varying alloy composition. Surface and Coatings Technology. 2019;368: 51–58. https://doi.org/10.1016/j.surfcoat.2019.04.006

Schürz S., Luckeneder G. H., Fleischanderl M., Mack P., Gsaller H., Kneissl A. C., Mori G. Chemistry of corrosion products on Zn–Al–Mg alloy coated steel. Corrosion Science. 2010;52(10): 3271–3279. https://doi.org/10.1016/j.corsci.2010.05.044

Duchoslav J., Steinberger R., Arndt M., … Stifter D. Evolution of the surface chemistry of hot dip galvanized Zn–Mg–Al and Zn coatings on steel during short term exposure to sodium chloride containing environments. Corrosion Science. 2015;91: 311–320. https://doi.org/10.1016/j.corsci.2014.11.033

LeBozec N., Thierry D., Persson D., Riener C. K., Luckeneder G. Influence of microstructure of zincaluminium- magnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere. Surface and Coatings Technology. 2019;374: 897–909. https://doi.org/10.1016/j.surfcoat.2019.06.052

Salgueiro Azevedo M., Allély C., Ogle K., Volovitch P. Corrosion mechanisms of Zn (Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corrosion Science. 2015;90: 482–490. https://doi.org/10.1016/j.corsci.2014.07.042

Salgueiro Azevedo M., Allély C., Ogle K., Volovitch P. Corrosion mechanisms of Zn (Mg, Al) coated steel: the effect of HCO3 − and NH4 + ions on the intrinsic reactivity of the coating. Electrochimica Acta. 2015;153: 159–169. https://doi.org/10.1016/j.electacta.2014.09.140

Amadeh A., Pahlevani B., Heshmati-Manesh S. Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings. Corrosion Science. 2002;44(10): 2321–2331. https://doi.org/10.1016/S0010-938X(02)00043-4

Manna M., Naidu G., Rani N., Bandyopadhyay N. Characterisation of coating on rebar surface using hot-dip Zn and Zn-4.9 Al-0.1 misch metal bath. Surface and Coatings Technology. 2008;202(8): 1510–1516. https://doi.org/10.1016/j.surfcoat.2007.07.001

Li S., Gao B., Yin S. … Zhu X. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating. Applied Surface Science. 2015;357: 2004–2012. https://doi.org/10.1016/j.apsusc.2015.09.172

Fan H., Xu W., Wei L., Zhang Z., Liu Y., Li Q. Relationship between La and Ce additions on microstructure and corrosion resistance of hot-dip galvanized steel. Journal of Iron and Steel ResearchInternational. 2020;27: 1108–1116. https://doi.org/10.1007/s42243-020-00482-1

Hölzl G., Luckeneder G., Duchaczek H., Kleber C., Hassel A. W. Evolution and interaction of corrosive species during the initial NaCl particle induced corrosion on zinc coated skin-passed steel. Corrosion Science. 2017;127: 222–229. https://doi.org/10.1016/j.corsci.2017.08.001

Rosalbino F., Angelini E., Macciò D., Saccone A., Delfino S. Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn–5% Al (Galfan) alloy in neutral aerated sodium chloride solution. Electrochimica Acta. 2009;54(4): 1204–1209. https://doi.org/10.1016/j.electacta.2008.08.063

Marder A. R. The metallurgy of zinc-coated steel. Progress in Materials Science. 2000;45(3): 191– 271. https://doi.org/10.1016/S0079-6425(98)00006-1

Fukuzuka T., Kajiwara K., Miki K. The properties of zinc-iron alloy electroplated steel Sheets. Tetsu-to- Hagané. 1980;66(7): 807–813. https://doi.org/10.2355/tetsutohagane1955.66.7_807

Watanabe T., Ohmura M., Honma T., Adaniya T. Iron-Zine Alloy electroplated steel for automotive body pPanels. SAE Technical Paper. 1982;820424. https://doi.org/10.4271/820424

Suzuki I., Enjuzi M. The development of the corrosion resistance of an Fe-Zn alloy coating on the basis of the behaviour of the corrosion product. Corrosion Science. 1986;26(5): 349–355. https://doi.org/10.1016/0010-938X(86)90010-7

Chang J. C., Wei H. H. Electrochemical and Mössbauer studies of the corrosion behavior of electrodeposited Fe Zn alloys on steel. Corrosion Science. 1990;30(8-9): 831–837. https://doi. org/10.1016/0010-938X(90)90006-Q

Drewien C. A., Benscoter A. O., Marder A. R. Metallographic preparation technique for electrodeposited iron zinc alloy coatings on steel. Materials Characterization. 1991;26(1): 45–51. https://doi.org/10.1016/1044-5803(91)90007-Q

Sagiyama M., Hiraya A., Watanabe T. Electrochemical behavior of electrodeposited zinciron alloys in 5% NaCl solution. Tetsu-to-Hagané. 1991;77(2): 244–250. https://doi.org/10.2355/tetsutohagane1955.77.2_244

Sagiyama M., Hiraya A. Analysis of initial oxide films formed on zinc and zinc-iron alloy coatings. Zairyo-to-Kankyo. 1993;42(11): 721–727. https://doi.org/10.3323/jcorr1991.42.721

Sagiyama M., Hiraya A. Corrosion dehavior of Zn and Zn-Fe alloy electroplated steel sheets in atmospheric exposure test. Zairyo-to-Kankyo. 1996;45(7): 432–438. https://doi.org/10.3323/jcorr1991.45.432

Sagiyama M., Hiraya A. Corrosion behavior of Zn and Zn-Fe alloy electroplated steel sheets in modified volvo test. Zairyo-to-Kankyo. 1996;45(8): 473–479. https://doi.org/10.3323/jcorr1991.45.473

Sagiyama M., Hiraya A., Watanabe T. Electrochemical behavior of electrodeposited zinciron alloys in alkaline solutions. Tetsu-to-Hagane. 1991;77(2): 251–257. https://doi.org/10.2355/tetsutohagane1955.77.2_251

Miyoshi Y., Yoshida K., Azami T., Kanamaru T., Kado S. On the corrosion behavior of painted galvanannealed steel Sheet. Tetsu-to-Hagane. 1980;66(7): 858–867. https://doi.org/10.2355/tetsutohagane1955.66.7_858

Bandyopadhyay N., Jha G., Singh A. K., Rout T. K., Rani N. Corrosion behaviour of galvannealed steel sheet. Surface and Coatings Technology. 2006; 200(14-15): 4312–4319. https://doi.org/10.1016/j.surfcoat.2005.02.153

Almeida E., Morcillo M. Lap-joint corrosion of automotive coated materials in chloride media. Part 2 – Galvannealed steel. Surface and Coatings Technology. 2000;124(2-3): 180–189. https://doi.org/10.1016/S0257-8972(99)00624-6

Ooij W. J., Sabata A. Under-vehicle corrosion testing of primed zinc and zinc alloy-coated steels. Corrosion. 1990;46(2): 162–171. https://doi.org/10.5006/1.3585083

Lee H. H., Hiam D. Corrosion resistance of galvannealed steel. Corrosion. 1989;45(10): 852–856. https://doi.org/10.5006/1.3584993

Dobias D., Pokorny P., Pernicova R. Evaluation of resistance of intermetallic Fe-Zn coating in the model environment as concrete pore solution. Procedia Engineering. 2017;172: 226–231. https://doi.org/10.1016/j.proeng.2017.02.053

Barranco V., Feliu Jr. S., Feliu S. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 1: directly exposed coatings. Corrosion Science. 2004;46(9): 2203–2220. https://doi.org/10.1016/j.corsci.2003.09.032

Pritzel dos Santos A., Manhabosco S. M., Rodrigues J. S., Dick L. F. P. Comparative study of the corrosion behavior of galvanized, galvannealed and Zn55Al coated interstitial free steels. Surface and Coatings echnology. 2015;279: 150–160. https://doi.org/10.1016/j.surfcoat.2015.08.046

Rout T. K., Bandyopadhyay N., Venugopalan T., Bhattacharjee D. Mechanistic interpretation of electrochemical behaviour of galvannealing coating in saline environment. Corrosion Science. 2005;47(11):

–2854. https://doi.org/10.1016/j.corsci.2004.11.005

Hamlaoui Y., Pedraza F., Tifouti L. Corrosion monitoring of galvanised coatings through electrochemical impedance spectroscopy. Corrosion Science. 2008;50(6): 1558–1566. https://doi.org/10.1016/j.corsci.2008.02.010

Thierry D., LeBozec N. Corrosion products formed on confined hot-dip galvanized steel in accelerated cyclic corrosion tests. Corrosion. 2009; 65(11): 718–725. https://doi.org/10.5006/1.3319098

Sato Y., Azumi K. Transition of the corrosion protection mechanism of iron partially covered with zinc coating. Journal of The Electrochemical Society. 2015; 162(10): 509–514. https://doi.org/10.1149/2.0241510jes

El-Mahdy G. A., Nishikata A., Tsuru T. Electrochemical corrosion monitoring of galvanized steel under cyclic wet–dry conditions. Corrosion Science. 2000;42(1): 183–194. https://doi.org/10.1016/S0010-938X(99)00057-8

Autengruber R., Luckeneder G., Hassel A. W. Corrosion of press-hardened galvanized steel. Corrosion Science. 2012;63: 12–19. https://doi.org/10.1016/j.corsci.2012.04.048

Winiarski J., Tylus W., Lutz A., De Graeve I., Szczygieł B. The study on the corrosion mechanism of protective ternary ZnFeMo alloy coatings deposited on carbon steel in 0.5 mol/dm3 NaCl solution. Corrosion Science. 2018;138: 130–141. https://doi.org/10.1016/j.corsci.2018.04.011

Almeida E., Morcillo M. Lap-joint corrosion of automotive coated materials in chloride media. Part 3 – Electrogalvanized steel/galvanneal interface. Surface and Coatings Technology. 2000;124(1): 44–52. https://doi.org/10.1016/S0257-8972(99)00625-8

Padilla V., Alfantazi A. Corrosion performance of galvanized steel in Na2SO4 and NaCl solutions at subfreezing temperatures. Corrosion. 2013;69(2): 174–185. https://doi.org/10.5006/0645

Ishikawa T., Matsumoto K., Yasukawa A., Kandori K., Nakayama T., Tsubota T. Influence of metal ions on the formation of artificial zinc rusts. Corrosion Science. 2004;46(2): 329–342. https://doi.org/10.1016/S0010-938X(03)00155-0

Ishikawa T., Murai M., Kandori K., Nakayama T. Structure and composition of artificially synthesized rusts of Zn–Fe and Zn–Ti alloys. Corrosion Science. 2006;48(10): 3172–3185. https://doi.org/10.1016/j.corsci.2005.11.015

Tanaka H., Fujioka A., Futoyu A., Kandori K., Ishikawa T. Synthesis and characterization of layered zinc hydroxychlorides. Journal of Solid State Chemistry. 2007;180(7): 2061–2066. https://doi.org/10.1016/j.jssc.2007.05.001

Morimoto K., Tamura K., Anraku S., Sato T., Suzuki M., Yamada H. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products. Journal of Solid State Chemistry. 2015;228: 221–225. https://doi.org/10.1016/j.jssc.2015.04.045

Tanaka H., Wakatsuki J., Kandori K., Ishikawa T., Nakayama T. Role of zinc compounds on the formation, morphology, and adsorption characteristics of b-FeOOH rusts. Corrosion Science. 2010;52(9): 2973–2978. https://doi.org/10.1016/j.corsci.2010.05.010

Rashwan S. M., Mohamed A. E., Abdel-Wahaab S. M., Kamel M. M. Electrodeposition and characterization of thin layers of Zn–Co alloys obtained from glycinate baths. Journal of Applied Electrochemistry. 2003;33: 1035–1042. https://doi.org/10.1023/A:1026280109296

Bahrololoom M. E., Gabe D. R., Wilcox G. D. Microstructure, morphology and corrosion resistance of electrodeposited zinc-cobalt compositionally modulated alloy multilayer coatings. Transactions of the IMF. 2004;82(1-2): 51–58. https://doi.org/10.1080/00202967.2004.11871554

Carpenter E. O. S., Farr J. P. G. Characterization of zinc-cobalt electrodeposits. Transactions of the IMF. 1998;76(4): 135–143. https://doi.org/10.1080/00202967.1998.11871213

Tian W., Xie F. Q., Wu X. Q., Yang Z. Z. Study on corrosion resistance of electroplating zinc–nickel alloy coatings. Surface and Interface Analysis. 2009;41(3): 251–254. https://doi.org/10.1002/sia.3017

Siitari D. W., Sagiyama M., Hara T. Corrosion of Ni-Zn electrodeposited alloy. Transactions of the Iron and Steel Institute of Japan. 1983;23(11): 959–966. https://doi.org/10.2355/isijinternational1966.23.959

Shastry C. R., Townsend H. E. Mechanisms of cosmetic corrosion in painted zinc and zinc-alloycoated sheet steels. Corrosion. 1989;45(2): 103–119. https://doi.org/10.5006/1.3577827

Giridhar J., Van Ooij W. J. Study of Zn-Ni and Zn-Co alloy coatings electrodeposited on steel strips II: Corrosion, dezincification and sulfidation of the alloy coatings. Surface and Coatings Technology. 1992;53(1): 35–47. https://doi.org/10.1016/0257-8972(92)90101-F

Baldwin K. R., Robinson M. J., Smith C. J. E. The corrosion resistance of electrodeposited zinc-nickel alloy coatings. Corrosion Science. 1993;35(5-8): 1267– 1272. https://doi.org/10.1016/0010-938X(93)90347-J

Ramanauskas R., Muleshkova L., Maldonado L., Dobrovolskis P. Characterization of the corrosion behaviour of Zn and Zn alloy electrodeposits: Atmospheric and accelerated tests. Corrosion Science. 1998;40(2-3): 401–410. https://doi.org/10.1016/S0010-938X(97)00144-3

Gavrila M., Millet J. P., Mazille H., Marchandise D., Cuntz J. M. Corrosion behaviour of zinc–nickel coatings, electrodeposited on steel. Surface and Coatings Technology. 2000;123(2-3): 164–172. https://doi.org/10.1016/S0257-8972(99)00455-7

Byk T. V., Gaevskaya T. V., Tsybulskaya L. S. Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings. Surface and Coatings Technology. 2008;202(24): 5817–5823. https://doi.org/10.1016/j.surfcoat.2008.05.058

Beltowska-Lehman E., Ozga P., Swiatek Z., Lupi C. Influence of structural factor on corrosion rate of functional Zn–Ni coatings. Crystal Engineering. 2002;5(3-4): 335–345. https://doi.org/10.1016/S1463-0184(02)00045-X

Fratesi R., Roventi G. Corrosion resistance of Zn-Ni alloy coatings in industrial production. Surface and Coatings Technology. 1996;82(1-2): 158–164. https://doi.org/10.1016/0257-8972(95)02668-1

Hino M., Hiramatsu K., Nishida N., Hiramatsu M., Kawasaki H. Effect of Co content on corrosion resistance of electroplated Zn-Co alloys from sulfate solutions. Journal of The Surface Finishing Society of Japan. 1992;43(9): 873–877. https://doi.org/10.4139/sfj.43.873

De Lima-Neto P., Correia A. N., Colares R. P., Araujo W. S. Corrosion study of electrodeposited Zn and Zn-Co coatings in chloride medium. Journal of the Brazilian Chemical Society. 2007;18: 1164–1175. https://doi.org/10.1590/S0103-50532007000600010

Lichušina S., Chodosovskaja A., Sudavicius A., … Juzeliunas E. Cobalt-rich Zn-Co alloys: electrochemical deposition, structure and corrosion resistance. Сhemija. 2008;19(1): 25–31.

Stein M., Owens S. P., Pickering H. W., Weil K. G. Dealloying studies with electrodeposited zinc-nickel alloy films. Electrochimica Acta. 1998;43(1-2): 223–226. https://doi.org/10.1016/S0013-4686(97)00228-4

Hagi, H., Inokuchi K., Hayashi Y., Higashi K. Corrosion process of Zn-Co, Zn-Fe and Zn-Ni alloy electroplatings. Tetsu-to-Hagane. 1987;73(14): 1730–1737. https://doi.org/10.2355/tetsutohagane1955.73.14_1730

FelloniL., Fratesi R., Quadrini E., Roventi G. Electrodeposition of zinc-nickel alloys from chloride solution. Journal of Applied Electrochemistry. 1987;17: 574–582. https://doi.org/10.1007/BF01084132

Baldwin K. R., Robinson M. J., Smith C. J. E. Galvanic corrosion behaviour of electrodeposited Zn–Ni coatings coupled with steel. British Corrosion Journal. 1994; 29(4): 299–304. https://doi.org/10.1179/000705994798267557

Fedrizzi L., Ciaghi L., Bonora P. L., Fratesi R., Roventi G. Corrosion behaviour of electrogalvanized steel in sodium chloride and ammonium sulphate solutions; a study by EIS. Journal of applied electrochemistry. 1992;22(3): 247–254. https://doi.org/10.1007/BF01030185

Hosny A. Y., El-Rafei M. E., Ramadan T. A., El-Gafari B. A., Morsy S. M. Corrosion resistance of zinc coatings produced from a sulfate bath. Metal Finishing. 1995;93(11): 55–59. https://doi.org/10.1016/S0026-0576(05)80050-9

Short N. R., Abibsi A., Dennis J. K. Corrosion resistance of electroplated zinc alloy coatings. Transactions of the IMF. 1989;67(1): 73–77. https://doi.org/10.1080/00202967.1989.11870845

Kawafuku J., Katoh J., Toyama M., Ikeda K., Nishimoto H., Satoh, H. Properties of zinc alloy coated steel sheets obtained by continuous vapor deposition pilot-line. SAE Technical Paper. 1991;912272. https://doi.org/10.4271/912272

Mosavat S. H., Shariat M. H., Bahrololoom M. E. Study of corrosion performance of electrodeposited nanocrystalline Zn–Ni alloy coatings. Corrosion Science. 2012;59: 81–87. https://doi.org/10.1016/j.corsci.2012.02.012

Kwon M., Jo D., Cho S. H., … Park J. M. Characterization of the influence of Ni content on the corrosion resistance of electrodeposited Zn–Ni alloy coatings. Surface and Coatings Technology. 2016;288: 163–170. https://doi.org/10.1016/j.surfcoat.2016.01.027

Boshkov N., Petrov K., Vitkova S., Nemska S., Raichevsky G. Composition of the corrosion products of galvanic alloys Zn–Co and their influence on the protective ability. Surface and Coatings Technology. 2002;157(2-3): 171–178. https://doi.org/10.1016/S0257-8972(02)00161-5

Karahan I. H., Çetinkara H. A. Study of effect of boric acid on Zn–Co alloy electrodeposition from acid baths and on composition, morphology and structure of deposit. Transactions of the IMF. 2011;89(2): 99–103. https://doi.org/10.1179/174591911X12968393517774

Tanaka H., Moriwaki N., Ishikawa T., Nakayama T. Simulating study of atmospheric corrosion of Zn–Ni alloy coating on steels in marine zone: Structure and properties of artificially synthesized Ni (II)-doped zinc hydroxychloride rust particles. Advanced Powder Technology. 2015;26(2): 612–617. https://doi.org/10.1016/j.apt.2015.01.010

Ortiz Z. I., Díaz-Arista P., Meas Y., Ortega-Borges R., Trejo G. Characterization of the corrosion products of electrodeposited Zn, Zn–Co and Zn–Mn alloys coatings. Corrosion Science. 2009;51(11): 2703–2715. https://doi.org/10.1016/j.corsci.2009.07.002

Zhang-mi T., Zhe-long Y., Mao-zhong A., Wen-liang L., Jing-shuang Z. Research on the structure and the corrosion resistance of Zn-Co alloy coating. Transactions of the IMF. 1999;77(6): 246–247. https://doi.org/10.1080/00202967.1999.11871293

Ivaskevic E., Selskis A., Sudavicius A., Ramanauskas R. Dealloying of electrodeposited zinc nickel alloy oatings. Chemija. 2001;12: 204–209.

How to Cite
Biryukov, A. I., Kozaderov, O. A., & Batmanova, T. V. (2024). Features of the corrosion of coatings based on zinc alloys: oxidation products and the selective dissolution of zinc. Review. Condensed Matter and Interphases, 26(1), 25-36. https://doi.org/10.17308/kcmf.2024.26/11806

Most read articles by the same author(s)