Growth and physical properties of CaSrBaF6 single crystals

Keywords: Calcium fluoride, Strontium fluoride, Barium fluoride, Fluorite, Solid solution, Isomorphism, High entropy alloys

Abstract

Using the Bridgman-Stockbarger method, crystals of triple fluoride CaF2-SrF2-BaF2 were grown in a composition range similar to that of CaSrBaF6. The crystals were 10-12 mm in diameter and 50–60 mm in length. The CaSrBaF6 crystal is a new optical material which is transparent in the mid-IR, visible and UV ranges. The uneven distribution of the components along the length of the crystal did not exceed 10 %. The edge of the absorption band in the IR range was 14.3 μm, and the optical absorption at the wavelength of 200 nm did not exceed 18 % (less than 0.2 cm–1). The refraction indices were 1.4527, 1.4488, and 1.4458 for the wavelengths of 633, 969, and 1539 nm respectively. The crystal melts in the temperature range of 1150–1210 °С. The CaSrBaF6 composition is an appropriate matrix for doping with rare-earth ions in order to obtain functional single-crystal and ceramic materials of the visible and IR ranges.

Downloads

Download data is not yet available.

Author Biographies

Sergey N. Ushakov, Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Republic of Mordovia, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

,PhD in Physics and Mathematics,
Senior Researcher, Department of Nanotechnologies
at the Research Centre for Laser Materials and
Technologies, Prokhorov General Physics Institute of
the Russian Academy of Science, Moscow; Senior
Researcher, Laboratory of Optical Materials
Technology, Institute of Physics and Chemistry,
Ogarev Mordovia State University, Saransk, Republic
of Mordovia, Russian Federation; e-mail: ushserg63@mail.ru

Maria A. Uslamina, Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Republic of Mordovia, Russian Federation

 PhD in Chemistry, Department
of Nanotechnologies at the Research Centre for Laser
Materials and Technologies, Prokhorov General
Physics Institute of the Russian Academy of Science,
Moscow; Senior Researcher, Laboratory of Optical
Materials Technology, Institute of Physics and
Chemistry, Ogarev Mordovia State University, Saransk,
Republic of Mordovia, Russian Federation; e-mail:
uslaminam@mail.ru

Aleksandr A. Pynenkov, Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Republic of Mordovia, Russian Federation

Engineer of Scientific and
Educational Centre “High-purity Materials and
Elements of Fibre Optics and Laser Technology”,
Institute of Physics and Chemistry, Ogarev Mordovia
State University, Saransk, Republic of Mordovia,
Russian Federation; e-mail: alekspyn@yandex.ru.

Vladimir P. Mishkin, Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Republic of Mordovia, Russian Federation

Leading Engineer of the
Laboratories of Electron Microscopy and Small-Angle
X-ray Diffractometry of the Institute of Physics and
Chemistry, Ogarev Mordovia State University, Saransk,
Republic of Mordovia, Russian Federation; e-mail:
Vladimirm1978@mail.ru

Konstantin N. Nishchev, Ogarev Mordovia State University, 68 Bolshevistskaya str., Saransk 430005, Republic of Mordovia, Russian Federation

PhD in Physics and
Mathematics, Associate Professor, Head of theDepartment of General Physics, Institute of Physics
and Chemistry, Ogarev Mordovia State University,
Saransk, Republic of Mordovia, Russian Federation;
e-mail: nishchev@inbox.ru . 

Sergey V. Kuznetsov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

PhD in Chemistry, Leading
Researcher of the Laboratory of Technology of
Nanomaterials for Photonics, Department of
Nanotechnologies at the Research Centre for Laser
Materials and Technologies, Prokhorov General
Physics Institute of the Russian Academy of Science,
Moscow, Russian Federation; e-mail: kouznetzovsv@gmail.com

Elena V. Chernova, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

Researcher of the Prokhorov
General Physics Institute of the Russian Academy of
Science, Moscow, Russian Federation; e-mail
e-chernova@yandex.ru

Pavel P. Fedorov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

DSc in Chemistry, Full Professor,
Chief Researcher, Department of Nanotechnologies at
the Research Centre for Laser Materials and
Technologies, Prokhorov General Physics Institute of
the Russian Academy of Science Moscow, Russian
Federation; e-mail: ppfedorov@yandex.ru

References

Yushkin N. P., Volkova N. V., Markova G. A. Opticheskii flyuorit [Optical fluorite]. Moscow: Nauka Publ.; 1983. 134 p. (In Russ.)

Zverev V. A., Krivopustova E. V., Tochilina T. V. Opticheskie materialy. Chast’ 2. Uchebnoe posobie dlya konstruktorov opticheskikh sistem i priborov [Optical materials. Part 2. Tutorial for designers of optical systems and devices]. S.-Peterburg: ITMO Publ.; 2013.248 p. (In Russ.)

Fedorov P. P., Osiko V. V. Crystal growth of fluorides. In: Bulk Crystal Growth of Electronic. Optical and Optoelectronic Materials. P. Capper (ed.). Wiley Series in Materials for Electronic and Optoelectronic Applications. John Wiley & Son. Ltd.; 2005. pp. 339–356. https://doi.org/10.1002/9780470012086.ch11

Kaminskii A.A. Laser crystals. Their physics and properties. In: Springer Series in Optical Sciences. Berlin: Springer; 1990. https://doi.org/10.1007/978-3-540-70749-3

Siebold M., Bock S., Schramm U., Xu B., Doualan J. L., Camy P., Moncorge R. Yb:CaF2 - a new old laser crystal. Applied Physics B. 2009;97: 327–338. https://doi.org/10.1007/s00340-009-3701-y

Druon F., Ricaud S., Papadopulos D. N., Pellegrina A., Camy P., Doualan J. L., Moncorge R., Courjaud A., Mottay E., Georges P. On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance. Optical Materials Express. 2011;1(3): 489–502. https://doi.org/10.1364/ome.1.000489

Basiev T. T., Orlovskii Yu. V., Polyachenkova M. V., Fedorov P. P., Kuznetsov S. V., Konyushkin V. A., Osiko V. V., Alimov O. K., Dergachev A. Yu. Continuously tunable cw lasing near 2.75 μm in diodepumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electronics. 2006;36(7): 591–594. https://doi.org/10.1070/qe2006v036n07abeh013178

Alimov O. K., Basiev T. T., Doroshenko M. E., Fedorov P. P., Konyuskin V. A., Nakladov A. N., Osiko V. V. nvestigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride single crystal. Optical Materials. 2012;34(5): 799–802. https://doi.org/10.1016/j.optmat.2011.11.010

Brites C. D. S., Kuznetsov S. V., Konyushkin V. A., Nakladov A. N., Fedorov P. P., Carlos L. D. Simultaneous measurement of the emission quantum yield and local temperature: the illustrative example of SrF2:Yb3+/Er3+

single crystals. European Journal of Inorganic Chemistry. 2020;2020(17): 1555–1561. https://doi.org/10.1002/ejic.202000113

Saleta Reiga D., Grauel B., Konyushkin V. A., Nakladov A. N., Fedorov P. P., Busko D., Howard I. A., Richards B. S., Resch-Genger U., Kuznetsov S. V., Turshatov A., Würtha C. Upconversion properties of SrF2:Yb3+, Er3+ single crystals. Journal of Materials Chemistry C. 2020;8(12): 4093–4101. https://doi.org/10.1039/c9tc06591a

Barnett J., Levine Z., Shirley E. Intrinsic birefringence in calcium fluoride and barium fluoride. Physical Review B. 2001;64(24): 241102. https://doi.org/10.1103/physrevb.64.241102

Klimm D., Rabe M., Bertram R., Uecker R., Parthier L. Phase diagram analysis and crystal growth of solid solutions Ca1-xSrxF2. Journal of Crystal Growth.2008;310(1): 152–155. https://doi.org/10.1016/j.jcrysgro.2007.09.031

Stasjuk V. A., Buchinskaya I. I., Ust’yanceva N. A., Fedorov P. P., Arbenina V. V. Liquidus and solidus of fluorite solid solutions in the CaF2-SrF2-LaF3 system. Russian Journal of Inorganic Chemistry. 1998;43(8): 1266–1269. Available at: https://www.elibrary.ru/item.asp?id=13300529 (In Russ.)

Nafziger R. H. High-temperature phase relations in the system BaF2-SrF2. Journal of the American Ceramic Society. 1971;54(9): 467. https://doi.org/10.1111/j.1151-2916.1971.tb12388.x

Fedorov P. P., Ivanovskaya N. A., Stasyuk V. A, Buchinskaya I. I., Sobolev B. P. Phase equilibria in the SrF2 -ВaF2-LaF3 system. Doklady Physical Chemistry. 1999;366(4-6): 168–170. (In Russ.)

Chernevskaya E. G. Smeshannye dvukhkomponentnye monokristally tipa ftoristyi kal’tsiiftoristyi strontsii i ikh opticheskie svoistva [Mixed two-component monocrystals of the calcium fluoridestrontium fluoride type and their optical properties]. Optiko-mekhanicheskaya promyshlennost’. 1960;5: 28–32. (In Russ.)

Chernevskaya E. G. Tverdost’ smeshannykh monokristallov tipa CaF2. [The hardness of mixed single crystals of the CaF2 type]. Optiko-mekhanicheskaya promyshlennost’. 1966;7: 51–52. (In Russ.)

Chernevskaya E. G., Anan’eva G. V. O strukture smeshannykh kristallov na osnove CaF2, SrF2, ВaF2 [About the structure of mixed crystals based on CaF2, SrF2, ВaF2]. Physics of the Solid State. 1966;8(1): 216–219. (In Russ.)

Pastor R. C., Pastor A. C. Solid solutions of metal halides under a reactive atmosphere. Materials Research Bulletin. 1976;11(8): 1043–1050. https://doi.org/10.1016/0025-5408(76)90183-5

Karimov D. N., Komar’kova O. N., Sorokin N. I., Sobolev B. P., Bezhanov V. A., Chernov S. P., Popov P. A. Growth of congruently melting Ca0.59Sr0.41F2 crystals and study of their properties. Crystallography Reports. 2010;55(3): 518–524. https://doi.org/10.1134/s1063774510030247

Popov P. A., Moiseev N. V., Karimov D. N., Sorokin N. I., Sulyanova E. A., Sobolev B. P., Konyushkin V. A., Fedorov P. P. Thermophysical characteristics of Ca1−хSrхF2 solid-solution crystals (0 ≤ х ≤ 1). Crystallography Reports. 2015;60(1): 116–122. https://doi.org/10.1134/s1063774515010186

Popov P. A., Krugovykh A. A., Konuyshkin V. A., Nakladov A. N., Kuznetsov S. V., Fedorov P. P. Thermal conductivity of single crystals of SrF2 – BaF2 solid solution. Inorganic Materials. 2021; 57(6): https://10.31857/S0002337X21060087

Fedorov P. P., Buchinskaya I. I., Ivanovskaya N. A., Konovalova V. V., Lavrishchev S. V., Sobolev B. P. CaF2-BaF2 phase diagram. Doklady Physical Chemistry. 2005;401(2): 53–55. https://doi.org/10.1007/s10634-005-0024-5

Wrubel G. P., Hubbard B. E., Agladge N. I., Sievers A. G., Fedorov P. P., Klimenchenko D. I., Ryskin A. I., Campbell G. A. Glasslike two-level systems in minimally disordered mixed crystals. Physical Review Letters. 2006;96(23): 235503. https://doi.org/10.1103/physrevlett.96.235503

Chang R. K., Lacina B., Pershan P. S. Raman scattering from mixed crystals CaxSr1-xF2 and SrxBa1-xF2. Physical Review Letters. 1966;17(14): 755–778. https://doi.org/10.1103/physrevlett.17.755

Basiev T. T., Vasil’ev S. V., Doroshenko M. E., Konuyshkin V. A., Kouznetsov S. V., Osiko V. V., Fedorov P. P. Efficient lasing in diode-pumping Yb3+:CaF2-SrF2 solid solution single crystals. Quantum Electronics. 2007;37(10): 934–937. https://doi.org/10.1070/QE2007v037n10ABEH013662

Lyapin A. A., Ermakov A. S., Kuznetsov S. V., Gushchin S. V., Ryabochkina P. A., Konyushkin V. A., Nakladov A. N. , Fedorov P. P. Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation. Journal of Physics: Conference Series (SPbOPEN 2019). 2019;1410: 012086 (4 pp).

https://doi.org/10.1088/1742-6596/1410/1/012086

Kuznetsov S. V., Konyushkin V. A., Nakladov A. N., Chernova E. V., Popov P. A., Pynenkov A. A., Nishchev K. N., Fedorov P. P. Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3(R = Ho, Pr) Fluorite Solid Solutions. Inorganic Materials. 2020; 56(9): 975-981. https://10.1134/S0020168520090113

Ushakov S. N., Fedorov P. P., Kuznetsov S. V., Osiko V. V., Uslamina M. A., Nishchev K. N. Study of Yb3+ optical centers in fluoride solid solution crystals CaF2–SrF2–YbF3. Optics and Spectroscopy. 2020;128(5): 600–604. https://doi.org/10.1134/S0030400X20050185

Zhang W., Liaw P. K., Zhang Y. Science and technology in high-entropy alloys. Science China Materials. 2018;61(1): 2–21. https://doi.org/10.1007/s40843-017-9195-8

Miracle D. B., Senkov O. N. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017;122: 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

Fedorov P. P. Glass formation criteria for fluoride system. Inorganic Materials. 1997;33(12): 1197–1205. Available at: https://www.elibrary.ru/item.asp?id=13251524.

Rost C. M., Sachet E., Borman T., Moballegh A., Dickey E. C., Hou D., Jones J.L., Curtarolo S., Maria J.‑P. Entropy-stabilized oxides. Nature Communications. 2016:6(1): 8485. https://doi.org/10.1038/ncomms9485

Chen X., Wu Y. High-entropy transparent fluoride laser ceramics. Journal of the American Ceramic Society. 2019;103(2): 750–756. https://doi.org/10.1111/jace.16842

Kuznetsov S. V., Fedorov P. P. Morphological stability of solid-liquid interface during melt crystallization of solid solutions M1-xRxF2+x. Inorganic Materials. 2008;44(13): 1434–1458. (Supplement). https://doi.org/10.1134/S0020168508130037

Fedorov P. P., Buchinskaya I. I. Spatial inhomogeneity in crystalline materials and saddletype congruent melting points in ternary system. Russian Chemical Reviews. 2012;81(1): 1–20. https://doi.org/10.1070/RC2012v081n01ABEH004207

Alexandrov A. A., Mayakova M. N., Voronov V. V., Pominova D. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K., Fedorov P. P. Synthesis upconversion luminophoresbasedoncalcium fluoride. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2020;22(1): 3–10. https://doi.org/10.17308/kcmf.2020.22/2524

Kuznetsov S. V., Aleksandrov A. A., Fedorov P. P. Fluoride optical nanoceramics. Inorganic Materials. 2021;57(6). https://10.31857/S0002337X21060075

Published
2021-03-16
How to Cite
Ushakov, S. N., Uslamina, M. A., Pynenkov, A. A., Mishkin, V. P., Nishchev, K. N., Kuznetsov, S. V., Chernova, E. V., & Fedorov, P. P. (2021). Growth and physical properties of CaSrBaF6 single crystals. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(1), 101-107. https://doi.org/10.17308/kcmf.2021.23/3310
Section
Статьи