Выращивание и физические свойства монокристаллов CaSrBaF6
Аннотация
Методом Бриджмена–Стокбаргера выращены кристаллы тройного фторида CaF2–SrF2–BaF2
в области составов, близких к CaSrBaF6. Диаметр кристаллов 10–12 мм, длина 50–60 мм. Кристалл CaSrBaF6 является новым оптическим материалом, прозрачным в среднем ИК-, видимом, и УФ-диапазоне. Неравномерность распределения компонентов по длине кристалла не превышает 10 %. Край полосы поглощения в ИК области составляет 14.3 мкм, оптическое поглощение на длине волны 200 нм не превышает 18 % (менее 0.2 см–1). Коэффициенты преломления для длин волн 633, 969, 1539 нм составили 1.4527, 1.4488, 1.4458 соответственно. Кристалл плавится в интервале температур 1150–1210 о С. Состав CaSrBaF6 является подходящей матрицей для легирования редкоземельными ионами для получения функциональных монокристаллических и керамических материалов видимого и ИК-диапазонов.
Скачивания
Литература
Yushkin N. P., Volkova N. V., Markova G. A. Opticheskii flyuorit [Optical fluorite]. Moscow: Nauka Publ.; 1983. 134 p. (In Russ.)
Zverev V. A., Krivopustova E. V., Tochilina T. V. Opticheskie materialy. Chast’ 2. Uchebnoe posobie dlya konstruktorov opticheskikh sistem i priborov [Optical materials. Part 2. Tutorial for designers of optical systems and devices]. S.-Peterburg: ITMO Publ.; 2013.248 p. (In Russ.)
Fedorov P. P., Osiko V. V. Crystal growth of fluorides. In: Bulk Crystal Growth of Electronic. Optical and Optoelectronic Materials. P. Capper (ed.). Wiley Series in Materials for Electronic and Optoelectronic Applications. John Wiley & Son. Ltd.; 2005. pp. 339–356. https://doi.org/10.1002/9780470012086.ch11
Kaminskii A.A. Laser crystals. Their physics and properties. In: Springer Series in Optical Sciences. Berlin: Springer; 1990. https://doi.org/10.1007/978-3-540-70749-3
Siebold M., Bock S., Schramm U., Xu B., Doualan J. L., Camy P., Moncorge R. Yb:CaF2 - a new old laser crystal. Applied Physics B. 2009;97: 327–338. https://doi.org/10.1007/s00340-009-3701-y
Druon F., Ricaud S., Papadopulos D. N., Pellegrina A., Camy P., Doualan J. L., Moncorge R., Courjaud A., Mottay E., Georges P. On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance. Optical Materials Express. 2011;1(3): 489–502. https://doi.org/10.1364/ome.1.000489
Basiev T. T., Orlovskii Yu. V., Polyachenkova M. V., Fedorov P. P., Kuznetsov S. V., Konyushkin V. A., Osiko V. V., Alimov O. K., Dergachev A. Yu. Continuously tunable cw lasing near 2.75 μm in diodepumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electronics. 2006;36(7): 591–594. https://doi.org/10.1070/qe2006v036n07abeh013178
Alimov O. K., Basiev T. T., Doroshenko M. E., Fedorov P. P., Konyuskin V. A., Nakladov A. N., Osiko V. V. nvestigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride single crystal. Optical Materials. 2012;34(5): 799–802. https://doi.org/10.1016/j.optmat.2011.11.010
Brites C. D. S., Kuznetsov S. V., Konyushkin V. A., Nakladov A. N., Fedorov P. P., Carlos L. D. Simultaneous measurement of the emission quantum yield and local temperature: the illustrative example of SrF2:Yb3+/Er3+
single crystals. European Journal of Inorganic Chemistry. 2020;2020(17): 1555–1561. https://doi.org/10.1002/ejic.202000113
Saleta Reiga D., Grauel B., Konyushkin V. A., Nakladov A. N., Fedorov P. P., Busko D., Howard I. A., Richards B. S., Resch-Genger U., Kuznetsov S. V., Turshatov A., Würtha C. Upconversion properties of SrF2:Yb3+, Er3+ single crystals. Journal of Materials Chemistry C. 2020;8(12): 4093–4101. https://doi.org/10.1039/c9tc06591a
Barnett J., Levine Z., Shirley E. Intrinsic birefringence in calcium fluoride and barium fluoride. Physical Review B. 2001;64(24): 241102. https://doi.org/10.1103/physrevb.64.241102
Klimm D., Rabe M., Bertram R., Uecker R., Parthier L. Phase diagram analysis and crystal growth of solid solutions Ca1-xSrxF2. Journal of Crystal Growth.2008;310(1): 152–155. https://doi.org/10.1016/j.jcrysgro.2007.09.031
Stasjuk V. A., Buchinskaya I. I., Ust’yanceva N. A., Fedorov P. P., Arbenina V. V. Liquidus and solidus of fluorite solid solutions in the CaF2-SrF2-LaF3 system. Russian Journal of Inorganic Chemistry. 1998;43(8): 1266–1269. Available at: https://www.elibrary.ru/item.asp?id=13300529 (In Russ.)
Nafziger R. H. High-temperature phase relations in the system BaF2-SrF2. Journal of the American Ceramic Society. 1971;54(9): 467. https://doi.org/10.1111/j.1151-2916.1971.tb12388.x
Fedorov P. P., Ivanovskaya N. A., Stasyuk V. A, Buchinskaya I. I., Sobolev B. P. Phase equilibria in the SrF2 -ВaF2-LaF3 system. Doklady Physical Chemistry. 1999;366(4-6): 168–170. (In Russ.)
Chernevskaya E. G. Smeshannye dvukhkomponentnye monokristally tipa ftoristyi kal’tsiiftoristyi strontsii i ikh opticheskie svoistva [Mixed two-component monocrystals of the calcium fluoridestrontium fluoride type and their optical properties]. Optiko-mekhanicheskaya promyshlennost’. 1960;5: 28–32. (In Russ.)
Chernevskaya E. G. Tverdost’ smeshannykh monokristallov tipa CaF2. [The hardness of mixed single crystals of the CaF2 type]. Optiko-mekhanicheskaya promyshlennost’. 1966;7: 51–52. (In Russ.)
Chernevskaya E. G., Anan’eva G. V. O strukture smeshannykh kristallov na osnove CaF2, SrF2, ВaF2 [About the structure of mixed crystals based on CaF2, SrF2, ВaF2]. Physics of the Solid State. 1966;8(1): 216–219. (In Russ.)
Pastor R. C., Pastor A. C. Solid solutions of metal halides under a reactive atmosphere. Materials Research Bulletin. 1976;11(8): 1043–1050. https://doi.org/10.1016/0025-5408(76)90183-5
Karimov D. N., Komar’kova O. N., Sorokin N. I., Sobolev B. P., Bezhanov V. A., Chernov S. P., Popov P. A. Growth of congruently melting Ca0.59Sr0.41F2 crystals and study of their properties. Crystallography Reports. 2010;55(3): 518–524. https://doi.org/10.1134/s1063774510030247
Popov P. A., Moiseev N. V., Karimov D. N., Sorokin N. I., Sulyanova E. A., Sobolev B. P., Konyushkin V. A., Fedorov P. P. Thermophysical characteristics of Ca1−хSrхF2 solid-solution crystals (0 ≤ х ≤ 1). Crystallography Reports. 2015;60(1): 116–122. https://doi.org/10.1134/s1063774515010186
Popov P. A., Krugovykh A. A., Konuyshkin V. A., Nakladov A. N., Kuznetsov S. V., Fedorov P. P. Thermal conductivity of single crystals of SrF2 – BaF2 solid solution. Inorganic Materials. 2021; 57(6): https://10.31857/S0002337X21060087
Fedorov P. P., Buchinskaya I. I., Ivanovskaya N. A., Konovalova V. V., Lavrishchev S. V., Sobolev B. P. CaF2-BaF2 phase diagram. Doklady Physical Chemistry. 2005;401(2): 53–55. https://doi.org/10.1007/s10634-005-0024-5
Wrubel G. P., Hubbard B. E., Agladge N. I., Sievers A. G., Fedorov P. P., Klimenchenko D. I., Ryskin A. I., Campbell G. A. Glasslike two-level systems in minimally disordered mixed crystals. Physical Review Letters. 2006;96(23): 235503. https://doi.org/10.1103/physrevlett.96.235503
Chang R. K., Lacina B., Pershan P. S. Raman scattering from mixed crystals CaxSr1-xF2 and SrxBa1-xF2. Physical Review Letters. 1966;17(14): 755–778. https://doi.org/10.1103/physrevlett.17.755
Basiev T. T., Vasil’ev S. V., Doroshenko M. E., Konuyshkin V. A., Kouznetsov S. V., Osiko V. V., Fedorov P. P. Efficient lasing in diode-pumping Yb3+:CaF2-SrF2 solid solution single crystals. Quantum Electronics. 2007;37(10): 934–937. https://doi.org/10.1070/QE2007v037n10ABEH013662
Lyapin A. A., Ermakov A. S., Kuznetsov S. V., Gushchin S. V., Ryabochkina P. A., Konyushkin V. A., Nakladov A. N. , Fedorov P. P. Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation. Journal of Physics: Conference Series (SPbOPEN 2019). 2019;1410: 012086 (4 pp).
https://doi.org/10.1088/1742-6596/1410/1/012086
Kuznetsov S. V., Konyushkin V. A., Nakladov A. N., Chernova E. V., Popov P. A., Pynenkov A. A., Nishchev K. N., Fedorov P. P. Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3(R = Ho, Pr) Fluorite Solid Solutions. Inorganic Materials. 2020; 56(9): 975-981. https://10.1134/S0020168520090113
Ushakov S. N., Fedorov P. P., Kuznetsov S. V., Osiko V. V., Uslamina M. A., Nishchev K. N. Study of Yb3+ optical centers in fluoride solid solution crystals CaF2–SrF2–YbF3. Optics and Spectroscopy. 2020;128(5): 600–604. https://doi.org/10.1134/S0030400X20050185
Zhang W., Liaw P. K., Zhang Y. Science and technology in high-entropy alloys. Science China Materials. 2018;61(1): 2–21. https://doi.org/10.1007/s40843-017-9195-8
Miracle D. B., Senkov O. N. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017;122: 448–511. https://doi.org/10.1016/j.actamat.2016.08.081
Fedorov P. P. Glass formation criteria for fluoride system. Inorganic Materials. 1997;33(12): 1197–1205. Available at: https://www.elibrary.ru/item.asp?id=13251524.
Rost C. M., Sachet E., Borman T., Moballegh A., Dickey E. C., Hou D., Jones J.L., Curtarolo S., Maria J.‑P. Entropy-stabilized oxides. Nature Communications. 2016:6(1): 8485. https://doi.org/10.1038/ncomms9485
Chen X., Wu Y. High-entropy transparent fluoride laser ceramics. Journal of the American Ceramic Society. 2019;103(2): 750–756. https://doi.org/10.1111/jace.16842
Kuznetsov S. V., Fedorov P. P. Morphological stability of solid-liquid interface during melt crystallization of solid solutions M1-xRxF2+x. Inorganic Materials. 2008;44(13): 1434–1458. (Supplement). https://doi.org/10.1134/S0020168508130037
Fedorov P. P., Buchinskaya I. I. Spatial inhomogeneity in crystalline materials and saddletype congruent melting points in ternary system. Russian Chemical Reviews. 2012;81(1): 1–20. https://doi.org/10.1070/RC2012v081n01ABEH004207
Alexandrov A. A., Mayakova M. N., Voronov V. V., Pominova D. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K., Fedorov P. P. Synthesis upconversion luminophoresbasedoncalcium fluoride. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2020;22(1): 3–10. https://doi.org/10.17308/kcmf.2020.22/2524
Kuznetsov S. V., Aleksandrov A. A., Fedorov P. P. Fluoride optical nanoceramics. Inorganic Materials. 2021;57(6). https://10.31857/S0002337X21060075
Copyright (c) 2021 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.