Gender differences in lipid metabolism
Abstract
The search for early markers of atherosclerosis is an effective method for providing personalized medicine allowing the prevention of the progression of this pathology. The aim of this study was the determination of the total indices of dyslipidemia and the identification of the gender indices of the extended lipid profile in the population of residents of the Southern and Central Federal Districts (Voronezh, Belgorod, Lipetsk, Kursk and Rostov regions) for the identification of early markers of atherogenicity. In a simultaneous clinical study, involving 339 patients (mean age 48 years), the concentrations of total cholesterol, triglycerides, LDL (low density lipoproteins), HDL (high density lipoproteins), apolipoproteins B and A1, the ApoB/ApoA1 ratio and the atherogenic coefficient were determined. For the identification of the relationship between changes in lipid profile indicators with cytolysis syndrome and indicators of carbohydrate metabolism, the activity of ALAT (alanine aminotransferase), GGTP (gamma-glutamyl transpeptidase) and glucose content
were also studied. Analysis of the results of the lipid spectrum of the population sample of the middle age group revealed significant metabolic disorders of lipid metabolism with a predominance of atherogenic lipid fractions and a significant excess of indicators of atherogenic lipid fractions in middle-aged men in comparison with women. It has been shown that the apoB/apoA1 index can be used as an auxiliary marker for early assessment of the prevalence of atherogenic lipid fractions, allowing the identification of risk groups for the development of diseases associated with metabolic disorders
Downloads
References
Mc Namara K., Alzubaidi H., Jackson J. K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integrated Pharmacy Research and Practice. 2019; 8: 1–11. https://doi.org/10.2147/IPRP.S133088
Fernández-Friera L., Peñalvo J. L., Fernández-Ortiz A., Ibañez B., López-Melgar B., Laclaustra M., Oliva B., Mocoroa A., Mendiguren J., Martínez de Vega V., García L., Molina J., Sánchez-González J., Guzmán G., Alonso-Farto J. C., Guallar E., Civeira F., Sillesen H., Pocock S., Ordovás J. M., Sanz G., Jiménez-Borreguero L. J., Fuster V. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation. 2015;131: 2104–2113. https://doi/10.1161/CIRCULATIONAHA.114.014310
Strategiya razvitiya zdravookhraneniya v Rossiiskoi Federatsii na period do 2025 goda. Ukaz Prezidenta Rossiiskoi Federatsii ot 06 iyunya 2019 g. No254. [Healthcare development strategy in the Russian Federation for the period until 2025. Decree of the President of the Russian Federation of June 6, 2019 No. 254.]. Moscow, 2019. (In Russ.)
Poznyak A., Orekhov A. N., Grechko A. V., Poggio P., Myasoedova V. A., Alfieri V. The Diabetes Mellitus–therosclerosis Connection: The role of lipid and glucose metabolism and chronic inflammation. International Journal of Molecular Sciences. 2020;21(5): 1835. https://doi/10.3390/ijms21051835
Diagnostika i korrektsiya lipidnogo obmena s tsel’yu profilaktiki i lecheniya ateroskleroza. Rossiiskie rekomendatsii, VI peresmotr, М; 2017. 44 s. [Diagnosis and correction of lipid metabolism with the aim of prediction and treatment of atherosclerosis, Russian recommendations, VI revision, М; 2017. 44 p.] (In Russ.)
Faintuch J., Faintuch S. Obesity and Diabetes- Scientific Advances and Best Practice, 2nd Edition. Springer; 2020. 994 p. https://doi.org/10.1007/978-3-030-53370-0
Komissarenko I. A., Levchenko S. V. Metabolicheskii sindrom: mezhdistsiplinarnaya problema-optimal‘noe reshenie. [Metabolic syndrome: interdisciplinary problem – optimal solution]. Мoscow: Prima-print Publ.; 2019. 44–46. (In Russ.)
Kuz’mina-Krutetskaya S. R., Repina M. A. Metabolicheskii sindrom u zhenshchin: metodicheskie rekomendatsii [Metabolic syndrome in women: methodological recommendations]. Sankt-Peterburg: Eko-Vektor Publ.; 2019. 72 p. (In Russ.)
Durrer Schutz D., Busetto L., Dicker D., Farpour-Lambert N., Pryke R., Toplak H., Widmer D., Yumuk V., Schutz Y. European practical and patient – centred guidelins for adult obesity management in primary care. Obeity Facts. 2019;12: 40–66. https://doi.org/10.1159/000496183
Anderson M. R., Geleris J., Anderson D. R., Zucker J., Nobel Y. R., Freedberg D., Small-Saunders J., Rajagopalan K. N., Greendyk R., Chae S. R., Natarajan K., Roh D., Edwin E., Gallagher D., Podolanczuk A., Barr R. G., Ferrante A. W., Baldwin M. R. Body mass index and risk for intubation or death in SARS-CoV-2 infection: a retrospective cohort study. Annals of Internal Medicine. 2020;173: 82–90. https://doi.org/10.7326/M20-3214
Canoy D., Beral V., Balkwill A., Wright F. L., Kroll M. E., Reeves G. K., Green J., Cairns B. J. Age et menarche and risks of coronary heart and vascular diseases in a large UK cohort. Circulation. 2015;131: 237–244. https://doi.org/10.1161/circulationaha.114.010070
Dobner J, Kaser S. Body mass index and the risk of infection – from underweight to obesity. Clinical Microbiology and Infection. 2018;24: 248. https://doi.org/10.1016/j.cmi.2017.02.013
Targher G., Mantovani A., Wang X. B., Yan H. D., Sun Q.F., Pan K. H., et al. Patients with diabetes are at higher risk for severe illness from COVID-19. Diabetes & Metabolism. 2020;46: 335–337. https://doi.org/10.1016/j.diabet.2020.05.001
Sabatine M. S., Giugliano R. P., Keech A. C., et al., Evolocumab and clinical outcomesin patients with cardiovascular disease. The New England Journal of Medicine. 2017;376: 1713–1722. https://doi.org/10.1056/nejmoa1615664
Schwartz G. G., Steg P. G., Szarek M., et al. Alirocumab and cardiovascular out-comes after acute coronary syndrome. The New England Journal of Medicine. 2018;379: 2097–2107. https://doi.org/10.1056/nejmoa1801174
Summerhill V. I., Grechko A. V., Yet S. F., Sobenin I. A., Orekhov A. N. The atherogenic role of circulating modified lipids in atherosclerosis. International Journal of Molecular Sciences. 2019;20: 3561. https://doi.org/10.3390/ijms20143561
Berneis K. K., Krauss R. M. Metabolic origins and clinical significance of LDL heterogeneity. Journal of Lipid Research. 2002;43: 1363–1379. https://doi.org/10.1194/jlr.R200004-JLR200
Maguire E. M., Pearce S. W. A., Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascular Pharmacology. 2019;112: 54–71. https://doi.org/10.1016/j.vph.2018.08.002
Ference B. A., Ginsberg H. N., Graham I., Ray K. K., Packard C. J., Bruckert E., Hegele R. A., Krauss R. M., Raal F. J., Schunkert H., Watts G. F., Borén J., Fazio S., Horton J. D., Masana L., Nicholls S. J., Nordestgaard B. G. , van de Sluis B., Taskinen M. R., Tokgözoglu L., Landmesser U., Laufs U., Wiklund O., Stock J. K., Chapman M. J., Catapano A. L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal. 2017;38(32): 2459–2472. https://doi.org/10.1093/eurheartj/ehx144
Borén J., Chapman M. J., Krauss R. M., Packard C. J., Bentzon J. F., Binder C. J., Daemen M. J., Demer L. L., Hegele R. A., Nicholls S. J., Nordestgaard B. G., Watts G. F., Bruckert E., Fazio S., Ference B. A., Graham I., Horton J. D., Landmesser U., Laufs U., Masana L., Pasterkamp G., Raal F. J., Ray K. K., Schunkert H., Taskinen M. R., van de Sluis B., Wiklund O., Tokgozoglu L., Catapano A. L., Ginsberg H. N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal. 2020;41(24): 2313–2330. https://doi.org/10.1093/eurheartj/ehz962
Stock J. Triglycerides and cardiovascular risk: Apolipoprotein B holds the key. Atherosclerosis. 2019;284: 221–222. https://doi.org/10.1016/j.atherosclerosis.2019.03.004
Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P.,Varigos J., Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364: 937–952.
https://doi.org/10.1016/s0140-6736(04)17018-9
Walldius G., Jungner I., Holme I., Aastveit A. H., Kolar W., Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet. 2001;358: 2026–2033. https://doi.org/10.1016/s0140-6736(01)07098-2
Walldius G., Jungner I., Aastveit A. H., Holme I., Furberg C. D., Sniderman A. D. The apoB/apo A-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clinical Chemistry and Laboratory Medicine. 2004;42: 1355–1363. https://doi.org/10.1515/cclm.2004.254
Gubergrits N. B., Belyaeva N. V., Klochkova A. E., Lukashevich G. M., Fomenko P. G. Metabolicheskii sindrom:kak izbezhat’ polipragmazii? [Metabolic syndrome: how to avoid Polypharmacy?]. Moscow: Prima Print Publ.; 2017. 96 p. (In Russ.)
HSE/ICGP Healthy weight management guidelines before, during & after pregnancy, 2013. Available at: https://www.icgp.ie/go/library/catalogue/item/73ACFC19-4195-4F57-91E5F973ED955D72
Xie J., Zu Y., Alkhatib A., Pham T. T, Gill F., Jang A., Radosta S., Chaaya G., Myers L., Zifodya J. S., Bojanowski C. M., Marrouche N. F., Mauvais-Jarvis F., Denson J. L. .Metabolic syndrome and COVID-19 mortality among adult black patients in New Orleans. Diabetes Care. 2021;44(1): 188–193. https://doi.org/10.2337/dc20-1714
Zheng K. I., Gao F., Wang X. B., Sun Q. F., Pan K. H., Wang T. Y., Ma H. L., Chen Y. P., Liu W. Y., George J., Zheng M. H. Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism Clinical and Experimental. 2020;108: 154244. https://doi.org/10.1016/j.metabol.2020.154244
Cho S. M. J., Lee, H. J., Shim, J. S., Song B. M., Kim H. C. Associations between age and dyslipidemia are differed by education level: The Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort. Lipids in Health and Disease. 2020;19, 12. https://doi.org/10.1186/s12944-020-1189-y
Cui J. Overview of risk prediction models in cardiovascular disease research. Annals of Epidemiology. 2009;19(10): 711–17. https://doi.org/10.1016/j.annepidem.2009.05.005
Dallmeier D., Koenig W. Strategies for vascular disease prevention: the role of lipids and related markers including apolipoproteins, low-density lipoproteins (LDL)-particle size, high sensitivity C-reactive protein (hs-CRP), lipoprotein-associated phospholipase A2 (Lp-PLA₂) and lipoprotein(a) (Lp(a)). Best Practice & Research Clinical Endocrinology & Metabolism. 2014;28(3): 281–94. https://doi.org/10.1016/j.beem.2014.01.003
Metelskaya V. A. Multimarker diagnostic panels for atherosclerosis. Russian Journal of Cardiology. 2018;(8): 65–73. https://doi.org/10.15829/1560-4071-2018-8-65-73 (In Russ.)
Riesen W. F. Lipid metabolism. In: Thomas L, (ed). Clinical laboratory diagnostics. Use and assessment of clinical laboratory results. Frankfurt/Main: TH-Books Verlagsgesellschaft; 1998: 171–173. https://doi.org/10.1515/cclm.1999.37.7.771
Koditschek L. K., Umbreit W. W. Alphaglycerophosphate oxidase in streptococcus faecium F 24. Journal of Bacteriology. 1969;98: 1063–1068. https://doi.org/10.1128/jb.98.3.1063-1068.1969
Young D. S. Effects of drugs on clinical laboratory tests. Annals of Clinical Biochemistry. 1997; 34: 579–581. https://doi.org/10.1177/000456329703400601
Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 1972,18; 499–502. https://doi.org/10.1093/clinchem/ 18.6.499
Stein E. A. Lipids, lipoproteins, and apolipoproteins. In: Tietz N. W. (ed.) Fundamentals of clinical chemistry. Philadelphia: WB Saunders Company; 1987:454–456.
Riesen W. F. Lipid metabolism. In: Thomas L., (ed.) Clinical laboratory diagnostics. Use and assessment of clinical laboratory results. Frankfurt/Main: TH-Books Verlagsgesellschaft; 1998: 172–173. https://doi.org/10.1515/cclm.1999.37.7.771
Bhatnagar D., Durrington P. N. Measurement and clinical significance of apolipoproteins A-1 and B. In: Rifai N., Warnick G. R., Dominiczak M. H. (eds.) Handbook of lipoprotein testing. Washington: AACC Press; 1997: 177–198.
Schumann G., Bonora R., Ceriotti F., Clerc- Renaud P., Ferrero C. A., Férard G., Franck P. F., Gella F. J., Hoelzel W., Jørgensen P. J., Kanno T., Kessne A., Klauker R., Kristiansen N., Lessinger J. M., Linsinger T. P., Misaki H., Panteghini M., Pauwels J., Schimmel H. G., Vialle A., Weidemann G., Siekmann L. IFCC primar y reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase. Clinical Chemistry and Laboratory Medicine. 2002;40: 718–24. https://doi.org/10.1515/cclm.2002.124
Shaw M., Stromme H., London L., Theodorsen L. International Federation of Clinical Chemistry, (IFCC), Scientific Committee, Analytical Section. IFCC methods for the measurement of catalytic concentration of nzymes. Part 4 IFCC method for y-glutamyltransferase. Journal of Clinical Chemistry and Clinical Biochemistry. 1983;21(10): 633–646.
Czok R., Barthelmai W. Enzymatische Bestimmungen der Glucose in Blut, Liquor und Harn. Wiener klinische Wochenschrift. 1962;40: 585–589. https://doi.org/10.1007/BF01478633
Liting P., Guoping L., Zhenyue C. Apolipoprotein B/apolipoprotein A1 ratio and non-high-density lipoprotein cholesterol. Predictive value for CHD severity and prognostic utility in CHD patients. Herz. 2015;40 (1): 1–7. https://doi.org/10.1007/s00059-014-4147-5
Pan L., Lu G., Chen Z. Combined use of apolipoprotein B/apolipoprotein A1 ratio and nonhigh- density lipoprotein cholesterol before routine clinical lipid measurement in predicting coronary heart disease. Coronary Artery Disease. 2014;25(5): 433–438. https://doi.org/10.1097/mca.0000000000000100
Andersson C., Lyass A., Vasan R. S., Massaro J. M., D’Agostino R. B., Sr., Robins S. J. Long-term risk of cardiovascular events across a spectrum of adverse major plasma lipid combinations in the Framingham heart study. American Heart Journal. 2014;168: 878–883. https://doi.org/10.1016/j.ahj.2014.08.007
Miller M., Cannon C., Murphy S., Qin J., Ray K., Braunwald E. Impact of triglyceride levels beyond lowdensity lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. Journal of the American College of Cardiology. 2008;51: 724–730. https://doi.org/10.1016/j.jacc.2007.10.038
Nurtazina A., Kozhakhmetova D., Dautov D., Shakhanova A., Chattu V. K. Apolipoprotein B/A1 ratio as a diagnostic alternative to triglycerides and HDLCholesterol for the prediction of metabolic syndrome among hypertensives in Kazakhstan. Diagnostics (Basel). 2020;10(8): 510. https://doi.org/10.3390/diagnostics10080510
Renee Ruhaak L. , van der Laarse A. , Cobbaert C. M. Apolipoprotein profiling as a personalized approach to the diagnosis and treatment of dyslipidaemia. Annals of Clinical Biochemistry. 2019; 56: 338–356. https://doi.org/10.1177/0004563219827620
Dreval’ A. V. Reproduktivnaya endokrinologiya [Reproductive endocrinology]. Moscow: GEOETARMedia Publ.; 2020. 240 p. (In Russ.)
Maas A. H., Appelman Y. E. Gender differences in coronary heart disease. Netherlands Heart Journal. 2010;18(12): 598–602. https://doi.org/10.1007/s12471-010-0841-y
Anty R., Iannelli A., Patouraux S., Bonnafous S., Lavallard V. J , Senni-Buratti M., Amor I. B., Staccini- Myx A., Saint-Paul M. C., Berthier F., Huet P. M., Le Marchand-Brustel Y., Gugenheim J., Gual P., Tran A. A new composite model including metabolic syndrome, alanine aminotransferase and cytokeratin-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Alimentary Pharmacology & Therapeutics. 2010;32: 1315–1322. https://doi.org/10.1111/j.1365-2036.2010.04480.x
Neuschwander-Tetri B. A., Clark J. M., Bass N. M., Van Natta M. L., Unalp-Arida A., Tonascia J., Zein C. O., Brunt E. M., Kleiner D. E., McCullough A. J., Sanyal A. J., Diehl A. M., Lavine J. E., Chalasani N., Kowdley K. V. NASH Clinical Research Network: Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52: 913–924. https://doi.org/10.1002/hep.23784
Verma S., Jensen D., Hart J., Mohanty S. R. Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in nonalcoholic fatty liver disease (NAFLD). Liver International. 2013;33: 1398–1405. https://doi.org/10.1111/liv.12226
Siminerio, L. M., Albright, A., Fradkin, J., Gallivan, J., McDivitt, J., Rodríguez, B., Tuncer, D., & Wong, F. The National Diabetes Education Program at 20 Years: Lessons Learned and Plans for the Future. Diabetes Care. 2018;41(2), 209–218. https://doi.org/10.2337/dc17-0976
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.