Thermodynamic study of manganese tellurides by the electromotive force method

  • Elnur N. Orujlu Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan https://orcid.org/0000-0001-8955-7910
  • Ziya S. Aliev Azerbaijan State Oil and Industry University, 6/21 Azadlэq ave., Baku AZ-1010, Azerbaijan https://orcid.org/0000-0001-5724-4637
  • Yasin I. Jafarov Baku State University, 23 Z. Khalilov Street, Baku Az-1148 Azerbaijan https://orcid.org/0000-0002-6597-2252
  • Eldar I. Ahmadov Baku State University, 23 Z. Khalilov Street, Baku Az-1148 Azerbaijan
  • Mahammad B. Babanly Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan; Baku State University, 23 Z. Khalilov Street, Baku Az-1148 Azerbaijan https://orcid.org/0000-0001-5962-3710
Keywords: Electromotive force method, Thermodynamic properties, Manganese tellurides, MnTe, MnTe2, Partial molar functions

Abstract

The thermodynamic properties of manganese tellurides were determined using an electromotive force (EMF) method with a liquid electrolyte in a temperature range from 300 to 450 K. EMF measurements were performed using equilibrium samples taken from the two-phase regions, namely MnTe2 + Te and MnTe + MnTe2, of the Mn–Te system. The phase compositions of all samples were controlled with the X-ray diffraction (XRD) method. The partial molar functions of manganese in alloys, as well as the standard thermodynamic functions of the formation and standard entropies of MnTe and MnTe2, were calculated. A comparative analysis of obtained results with literature data is performed

Downloads

Download data is not yet available.

Author Biographies

Elnur N. Orujlu, Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan

PhD student, Junior Researcher at
the Institute of Catalysis and Inorganic Chemistry,
Azerbaijan National Academy of Sciences, Baku,
Azerbaijan; e-mail: elnur.oruclu@yahoo.com

Ziya S. Aliev, Azerbaijan State Oil and Industry University, 6/21 Azadlэq ave., Baku AZ-1010, Azerbaijan

PhD in Chemistry, Assistance
Professor, Azerbaijan State Oil and Industry University,
Baku, Azerbaijan; e-mail: ziyasaliev@gmail.com

Yasin I. Jafarov, Baku State University, 23 Z. Khalilov Street, Baku Az-1148 Azerbaijan

DSc in Chemistry, Associate
Professor, Baku State University, Baku, Azerbaijan;
e-mail: yasin.cafarov@hotmail.com

Eldar I. Ahmadov, Baku State University, 23 Z. Khalilov Street, Baku Az-1148 Azerbaijan

DSc in Chemistry, Professor,
Baku State University, Baku, Azerbaijan; e-mail:
eldar_akhmedov@mail.ru

Mahammad B. Babanly, Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan; Baku State University, 23 Z. Khalilov Street, Baku Az-1148 Azerbaijan

Corresponding Member of
the Azerbaijan National Academy of Sciences, Deputydirector
of the Institute of Catalysis and Inorganic
Chemistry, Azerbaijan National Academy of Sciences,
Baku State University, Baku, Azerbaijan; e-mail:
babanlymb@gmail.com

References

Kau A. B., Two-dimensional layered materials: structure, properties, and prospects for device applications. Journal of Materials Research. 2014;29(3): 348–361. https://doi.org/10.1557/jmr.2014.6

Tedstone A. A., Lewis D. J., O’Brien P., Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chemistry of Materials. 2016;28: 1965–1974. https://doi.org/10.1021/acs.chemmater.6b00430

Ali Z., Zhang T., Asif M., Zhao L., Hou Y., Transition metal chalcogenide anodes for sodium storage. Materials Today. 2020;35: 131–167. https://doi.org/10.1016/j.mattod.2019.11.008

Shang C., Fu L., Zhou S., Zhao J. Atomic Wires of transition metal chalcogenides: A family of 1D materials for flexible electronics and spintronics. Journal of the American Chemical Society AU. 2021:1(2); 147–155. https://doi.org/10.1021/jacsau.0c00049

Xu Y., Li W., Wang C., Chen Z., Wu Y., Zhang X., Li J., Lin S., Chen Y., Pei Y. MnTe2 as a novel promissing thermoelectric material, Journal of Materiomics. 2018;4(3): 215–220. https://doi.org/10.1016/j.jmat.2018.04.001

Sreeram P. R., Ganesan V., Thomas S., Anantharaman M. R. Enhanced thermoelectric performance of nanostructured manganese telluride via antimony doping. Journal of Alloys and Compounds. 2020;836: 155374. https://doi.org/10.1016/j.jallcom.2020.155374

Basit A., Yang J., Jiang Q., Zhou Z., Xin J., Li X., Li S. Effect of Sn doping on thermoelectric properties of p-type manganese telluride. Journal of Alloys and Compounds. 2019;777: 968–973. https://doi.org/10.1016/j.jallcom.2018.11.066

Mong R. S. K., Moore J. E., Magnetic and topological order united in a crystal. Nature. 2019;576: 390–392. https://doi.org/10.1038/d41586-019-03831-7

Tokura Y., Yasuda K., Tsukazaki A. Magnetic topological insulators. Nature Reviews Physics. 2019;1: 126–143. https://doi.org/10.1038/s42254-018-0011-5

Wu J., Liu F., Sasase M., Ienaga K., Obata Y., Yukawa R., Horiba K. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Science Advances. 2019;5(11): eaax9989. https://doi.org/10.1126/sciadv.aax9989

Estyunin D. A., Klimovskikh I.I., Shikin A.M., Schwier E.F., Otrokov M.M., Kimura A., Kumar S., Filnov S. O., Aliev Z. S., Babanly M. B., Chulkov E. V. Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4. APL Materials. 2020;8: 021105(1-7). https://doi.org/10.1063/1.5142846

Klimovskikh I. I., Otrokov M. M., Estyunin D., Eremeev S. V., Filnov S. O., Koroleva A., Shevchenko E., Voroshnin V., Rybkin A. G., Rusinov I. P., Blanco-Rey M., Hoffmann M., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Abdullayev N. A., Zverev V. N., Kimura A., Tereshchenko O. E., Kokh K. A., Petaccia L., Santo G. D., Ernst A.,. Echenique P. M, Mamedov N. T., Shikin A. M., Chulkov E. V. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family. npj Quantum Materials. 2020;5(1): 1–9. https://doi.org/10.1038/s41535-020-00255-9

Shikin A. M., Estyunin D. A., Klimovskikh I. I., Filnov S. O., Schwier E. F., Kumar S., Miyamoto K., Okuda T., Kimura A., Kuroda K., Yaji K., Shin S., Takeda Y., Saitoh Y., Aliev Z. S., Mamedov N. T., Amiraslanov I. R., Babanly M. B., Otrokov M. M., Eremeev S. V., Chulkov E. V. Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4. Scientific Reports. 2020;10: 13226. https://doi.org/10.1038/s41598-020-70089-9

Otrokov M. M., Klimovskikh I. I., Bentmann H., Estyunin D., Zeugner A., Aliev Z. S., Gaß S., Wolter A. U. B, Koroleva A. V., Shikin A. M., Blanco-Rey M., Hoffmann M., Rusinov I. P., Vyazovskaya A. Y., Eremeev S. V., Koroteev Y. M., Kuznetsov V. M., Freyse F., Sбnchez-Barriga J., Amiraslanov I. R., Babanly M. B., Mamedov N. T., Abdullayev N. A., Zverev V. N., Alfonsov A., Kataev V., Büchner B., Schwier E. F., Kumar S., Kimura A., Petaccia L., Di Santo G., Vidal R. C., Schatz S., Kißner K., Ünzelmann M., Min C. H., Moser S., Peixoto T. R. F., Reinert F., Ernst A., Echenique P. M., Isaeva A., Chulkov E. V. Prediction and observation of an antiferromagnetic topological insulator. Nature. 2019;576: 416–422. https://doi.org/10.1038/s41586-019-1840-9

Aliev Z. S., Amiraslanov I. R., Nasonova D. I., Shevelkov A. V., Abdullayev N. A., Jahangirli Z. A., Orujlu E. N., Otrokov M. M., Mamedov N. T.,. Babanly M. B,. Chulkov E. V. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure. Journal of Alloys and Compounds. 2019;789: 443–450. https://doi.org/10.1016/j.jallcom.2019.03.030

Babanly M. B., Chulkov E. V., Aliev Z. S.,. Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russian Journal of Inorganic Chemistry. 2017;62: 1703–1729. https://doi.org/10.1134/S0036023617130034

Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Tagiev D. B., Yusibov Y. A. Some issues of complex studies of phase equilibria and thermodynamic properties in ternary chalcogenide systems involving Emf measurements (Review). Russian Journal of Inorganic Chemistry. 2019;64: 1649–1671. https://doi.org/10.1134/S0036023619130035

Abrikosov N. Kh., Dyul’dina K. A., Zhdanova V. V. Study of the Mn-Te System. Izvestiya Akademii nauk SSSR, seriya Neorganicheskiye Materialy. 1967;4: 1878–1884. (in Russ.)

Vanyarkho V. G., Zlomanov V. P., Novoselova A. V. Physicochemical study of manganese telluride. Izvestiya Akademii nauk SSSR, seriya Neorganicheskiye Materialy. 1969;6: 1257–1259. (in Russ.)

Schlesinger M. E. The Mn-Te (manganesetellurium) system. Journal of Phase Equilibria. 1998; 19(6): 591–596. https://doi.org/10.1361/105497198770341806

Vassilie V., Bykov M., Gambino M., Bros J. P. Thermodynamic investigation of the manganesetellurium system. Journal de Chimie Physique et de Physico-Chimie Biologique. 1993;90(2): 463–476. https://doi.org/10.1051/jcp/1993900463

Loukachenko G., Polotskaya R. I., Duldina K. A., Abrikosov N. Kh. Thermodynamic properties of manganese-tellurium compounds. Izvestiya Akademii nauk SSSR, seriya Neorganicheskiye Materialy. 1971;7(5): 860–861. (In Russ.)

Barin I. Thermochemical Data of Pure Substances, Third Edition, VCH, 2008. 1936 p.

Mills K. C. Thermodynamic data for inorganic sulphides, selenides and tellurides , London, Butterworths; 1974. 845 p.

Iorish V. S., Yungman V. S. Database of thermal constants of substances. 2006. Available at: http://www.chem.msu.ru/cgi-bin/tkv.pl

Kubaschewski O., Alcock C. B., Spencer P. J. Materials Thermochemistry, Oxford: Pergamon Press Ltd; 1993. 363 p.

Chevalier P. Y., Fischer E., Marbeuf A. A thermodynamic evaluation of the Mn-Te binary system. Thermochimica Acta. 1993;223: 51–63. https://doi.org/10.1016/0040-6031(93)80119-U

Westrum E. F., Gronvold F., Manganese disulfide (hauerite) and manganese ditelluride. Thermal properties from 5 to 350° Kand antiferromagnetic transitions. The Journal of Chemical Physics.1970; 52: 3820–3826. https://doi.org/10.1063/1.1673563

Fabre C. Thermal studies on the selenides. Annales de chimie et de physique. 1887;10: 472–550. (in French)

Morozova M. P., Stolyarova T. A. Formation enthalpy of manganese selenides and tellurides. Vestnik Leningradskogo Universiteta, Seriya Fiziki i Khimii. 1964;19(16): 150–153. (in Russ.)

Wiedemeier H. , Sadeek H. Knudsen measurements ofthe sublimation of manganese (II) telluride. High Temperature Science. 1970;2: 252–258.

Imamaliyeva S. Z., Musayeva S. S., Babanly D. M., Jafarov Y. I., Tagiyev D. B., Babanly, M. B. Determination of the thermodynamic functions of bismuth chalcoiodides by EMF method with morpholinium formate as electrolyte. Thermochimica Acta. 2019;679: 178319(1-7). https://doi.org/10.1016/j.tca.2019.178319

Mashadiyeva L. F. , Mansimova S. G. , Babanly K. N., Yusibov Y. A., Babanly M. B. Thermodynamic properties of solid solutions in the PbSe–AgSbSe2 system. Russian Chemical Bulletin. 2020;69: 660–664. https://doi.org/10.1007/s11172-020-2814-7

Morachevsky A. G., Voronin G. F., Geyderich V. A., Kutsenok I. B. Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh system. [Electrochemical methods of investigation in hermodynamics of metal systems]. Moscow: Akademkniga Publ.; 2003. 334 p. Available at: https://elibrary.ru/item.asp?id=19603291 (In Russ.)

Babanly M. B., Yusibov Y. A. Elektrokhimicheskie metody v termodinamike neorganicheskikh sistem [Electrochemical methods in thermodynamics of inorganic systems]. Baku: BSU Publ.; 2011. 306 p.

Published
2021-06-04
How to Cite
Orujlu, E. N., Aliev, Z. S., Jafarov, Y. I., Ahmadov, E. I., & Babanly, M. B. (2021). Thermodynamic study of manganese tellurides by the electromotive force method. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(2), 273-281. https://doi.org/10.17308/kcmf.2021.23/3438
Section
Original articles