Formation of a quasi-equilibrium domain structure of crystals of the TGS group near TC

Keywords: Piezoresponse atomic force microscopy, Triglycine sulfate, space-time correlation function, Characteristic length, Time dependences, Power law

Abstract

In the temperature range ΔT ≈ 321 K ÷ 322 K, the kinetics of the nonequilibrium domain structure of triglycine sulphate crystals, both pure and with specially introduced defects, has been studied by means of piezoresponse force microscopy technique. The temporal change in the domain structure as a set of regions with a scalar order parameter of P (r, t) = +1 and −1 for oppositely polarized domains was analysed by the behaviour of the space-time correlation function C(r,t) = ·Р(r,t)Р(0,t)Ò. At different distances from the Curie point Tc, the characteristic length Lc, as a scale measure of the average domain size, increases with time according to the power law Lc(t)~(t−t0)a. A decrease of the exponent a with distance from Tc can be a consequence of the transition of the domain structure of TGS crystals from a non-conservative state to a
conservative one.

Downloads

Download data is not yet available.

Author Biographies

Olga M. Golitsyna, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and Mathematics,
Assistant Professor, Voronezh State University,
Voronezh, Russian Federation; e-mail: golitsynaom@yandex.ru

Sergey N. Drozhdin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and Mathematics,
Professor, Head of Department, Voronezh State
University, Voronezh State University, Voronezh,
Russian Federation; e-mail: drozhdin@phys.vsu.ru

References

Choudhury R R., Chitra R., Ramanadham M., Effect of isotope substitution and pressure on the phase transition in triglycine sulphate. Physica B: Condensed Matter. 2005;36691-4): 116–121. https://doi.org/10.1016/j.physb.2005.05.034

Bdikin I. K., Wojtas M., Kiselev D., Isakov D., Kholkin A. L. Ferroelectric-paraelectric phase transition in triglycine sulphate via piezoresponse force microscopy. Ferroelectrics. 2012;426(1): 215–222. https://doi.org/10.1080/00150193.2012.671742

Hudspeth J. M., Goossens D. J., Wellbery T. R., Gutmann M. J., Diffuse scattering and the mechanism for the phase transition in triglycine sulphate. Journal of Materials Science. 2013;48(19): 6605–6612. https://doi.org/10.1007/s10853-013-7457-8

Sidorkin A. S., Domain structure in ferroelectrics and related materials. Cambridge International Science Publising; 2006. 240 p.

Tagantsev А. K., Cross L. E., Fousek J. Domains in ferroic crystals and thin films. New York: Springer; 2010. 830 p. https://doi.org/10.1007/978-1-4419-1417-0

Nakatani N., Ferroelectric domain structure in TGS just below the Curie point after heat treatment. Japanese Journal of Applied Physics. 1985;24(Part 2, No. 7): L528–L530. https://doi.org/10.1143/JJAP.24.L528

Tomita N., Orihara H., Ishibashi Y. Ferroelectric domain pattern evolution in quenched triglycine sulphate. Journal of the Physical Society of Japan. 1989;58(4): 1190–1196. https://doi.org/10.1143/JPSJ.58.1190

Likodimos V., Labardi V., Allegrini M. Kinetics of ferroelectric domains investigated by scanning force microscopy. Physical Review B. 2000;61(21): 14440–14447. https://doi.org/10.1103/physrevb.61.14440

Likodimos V., Labardi M., Orlik X. K., Pardi L., Allegrini M., Thermally activated ferroelectric domain growth due to random defects. Physical Review B. 2001;63(6): 064104– 064107. https://doi.org/10.1103/physrevb.63.064104

Shin S., Baek J., Hong J. W., Khim Z. G. Deterministic domain formation observed in erroelectrics by lectrostatic forse microscopy. Journal of Applied Physics. 2004;96(8): 4372–4377. https://doi.org/10.1063/1.1781760

Tolstikhina A. L., Gainutdinov R. V., Belugina N. V., Lashkova A. K., Кalinin А. S., Atepalikhin V. V., … Bykov V. A. Study of the quasi-periodic one dimensional domain structure near TC of TGS crystal by PFM and hybrid PFM methods. Physica B: Condensed Matter. 2018;550: 332–339. https://doi.org/10.1016/j.physb.2018.09.025

Golitsyna O. M., Drozhdin S. N., Grechkina M. N. Evolution of the domain structure of triglycine sulphate single crystal in the vicinity of phase transition. Ferroelectrics. 2017;506(1): 127–135. https://doi.org/10.1080/00150193.2017.1282286

Маzur О. Yu., Stefanovich L. I., Yurchenko V. М. Influence of quenching conditions on the kinetics of formation of a domain structure of ferroelectrics. Physics of the Solid State, 2015;57(3): 576–580. https://doi.org/10.1134/S1063783415030142

Mazur O. U., Stefanovich L. I. Effect of the degree of overcooling on relaxation of the domain structure of triglycine sulphate. Physics of the SolidState. 2019;61(8): 1420–1424. https://doi.org/10.1134/s1063783419080183

Yakushkin E. D. Dielectric response of auniaxial ferroelectric in a magnetic field. JETP Letters. 2014;99(7): 415–418. https://doi.org/10.1134/S0021364014070133

Ivanova E. S., Rumyantsev I. D., Petrzhik E. A., Change in dielectric properties of triglycine sulfate in a constant magnetic field. Physics of the Solid State. 2016:58(1): 127–133. https://doi.org/10.1134/S1063783416010157

Gainutdinov R. V., Ivanova E. S., Petrzhik E. A., Lashkova A. K., Volk T. R. Magnetic memory effects in triglycine sulfate ferroelectric crystals. JETP Letters. 2017;106(2): 97–102. https://doi.org/10.1134/S0021364017140053

Golitsyna O. M., Drozhdin S. N. Influence of a static magnetic field on the dielectric properties of triglycine sulfate. Ferroelectrics. 2020;567(1): 244-263. https://doi.org/10.1080/00150193.2020.1791610

Baryshnikov S. V., Charnaya E. V., Shatskaya Y. A., Milinskiy A. Yu., Samoilovich M. I., Michel D., Tien C. Effect of confined geometry on linear and nonlinear dielectric properties of triglycine sulfate near the phase transition. Physics of the Solid State. 2011;53(6): 1212–1216. https://doi.org/10.1134/S1063783411060059

Golitsyna O. M., Drozhdin S. N., Nechaev V. N., Viskovatykh A. V., Kashkarov V. M., Gridnev A. E., Chernyshev V. V. Dielectric properties of porous aluminum and silicon oxides with inclusions of triglycine sulfate and its odified analogs. Physics of the Solid State. 2013;55(3): 529–535. https://doi.org/10.1134/s1063783413030128

Golitsyna O. M., Drozhdin S. N., Kashkarov V. M., Chulakova V. O. Dielectric properties of porous silicon with inclusions of triglycinesulphate. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2015;17(2): 153–159. Available at: https://www.elibrary.ru/item.asp?id=23816615 (In Russ., abstract in Eng.)

Mai B. D., Nguyen H. T., Ta D. H., Sidorkin A. S., Milovidova S. D. Preparation and dielectric properties of a mixed ferroelectric composite from nanoparticles of cellulose and triglycine sulfate. Ferroelectrics. 2019;543(1): 175–183. https://doi.org/10.1080/00150193.2019.1592431

Bray A. J., Theory of phase-ordering kinetics. Advances in Physics. 1994;43: 357–459. https://doi.org/10.1080/00018739400101505

Dontzova L. I., Tikhomirova N. A., Shuvalov L. A. Investigation of domain structure and switching processes in ferroelectrics by the liquid crystal method. Ferroelectrics. 1989;97(1): 87–124. https://doi.org/10.1080/00150198908018085

Takahashi K., Takagi M. Topographic study on domain boundaries in TGS. I. Journal of the Physical Society of Japan. 1978;44(4): 1266–1274. https://doi.org/10.1143/JPSJ.44.1266

Mitsui T., Tatsuzaki I., Nakamura E. An introduction to the physics of ferroelectrics. London: Gordon and Breach; 1976. 443 p.

Golitsyna O. M., Grechkina M. V., Drozhdin S. N., Chulakova V. O. Time dependencies of the domainstructure parameters of TGS crystal near the phase transition temperature. Condensed Matter and Interphases. 2016;18(4): 494–504. Available at: https://www.elibrary.ru/item.asp?id=27474850 (In Russ., abstract in Eng.)

Drozhdin S. N., Golitsyna O. M., Nikishina A. I., Kostsov A. M. Pyroelectric and dielectric properties of triglycine sulphate with an impurity of phosphorus (TGSP). Ferroelectrics. 2008;373(1): 93–98. https://doi.org/10.1080/00150190802408804

Golitsyna O. M., Drozhdin S. N., Korobova A. D., Lesnikova V. O. Analysis of model and real 1800 domain picturesby means of space-time correlation functions. OAJ Materials and Devices. 2019;4(1): 1506.

Tikhomirova N. A., Pikin S. A., Shuvalov L. A., Dontsova L. I., et al., Visualization of static and the dynamics of domain structure in triglycine sulfate by liquid crystals, Ferroelectrics. 1980;29(1): 145–156. https://doi.org/10.1080/00150198008008470

Shur V. Ya., Correlated nucleation and selforganized kinetics of ferroelectric domains. In: Nucleation Theory and Applications. J.W.P. Schmelzer(ed.). Wiley-VCH Verlag; 2005. pp. 178–214. https://doi.org/10.1002/3527604790.ch6

Dolbilov M. A., Shur V. Y., Shishkina E. V., Angudovich E. S., Ushakov A. D., Baldi P., de Micheli M. P.Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange. Ferroelectrics. 2013;442(1): 82–91. https://doi.org/10.1080/10584587.2013.776408

Vasilevskaya T. N., Andreev N. S. Experimental small-angle X-ray scattering investigation of initial stages the spinodal decomposition in model sodium silicate glasses. Physics of the Solid State. 2011;53: 2250–2256 . https://doi.org/10.1134/S106378341111031X

Golitsyna O. M., Drozhdin S. N., Lesnikova V. O. Effect of L,a-alanine impurity on the spontaneous evolution of the domain structure of triglicine sulphate near the Curie point. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(4): 564–573. Available at: https://www.elibrary.ru/item.asp?d=36653678 (In Russ., abstract in Eng.)

Novik V. K., Lotonov A. M., Gavrilova N. D. Dielectric loss as an indication of the kinetics of the ferroelectric phase transition. Physics of the Solid State. 2009;51: 1414–1419. https://doi.org/10.1134/s1063783409070221

Published
2021-11-24
How to Cite
Golitsyna, O. M., & Drozhdin, S. N. (2021). Formation of a quasi-equilibrium domain structure of crystals of the TGS group near TC. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(4), 507-517. https://doi.org/10.17308/kcmf.2021.23/3669
Section
Original articles