SURFACE MORPHOLOGY OF PbTe/Si (100) FILMS SYNTHESIZED BY MODIFIED "HOT WALL" EPITAXY TECHNIQUE
Abstract
The narrow band gap lead chalcogenide semiconductors and related solid solutions are capable to detect effectively an infrared (IR) radiation in the wavelength range 3–25 μm. Due to the unique combination of the optimal dielectric permittivity, Seebeck coefficient, and high thermal conductivity, lead telluride is promising material for manufacturing of high-performance intermediate-temperature thermoelectric devices. By scanning electron microscopy (SEM), electron probe microanalysis (EPMA), X-ray analysis (XRD), and atomic force microscopy (AFM) the quantitative elemental composition, phase nature, surface morphology, and average surface roughness of homogeneous lead telluride films synthesized by modified «hot wall» technique on Si (100) substrates have been studied. The XRD patterns have shown that at condition of high condensation process rate, which was realized at substrate temperatures below T = 573 K and corresponded to the maximum deviation from the thermodynamic equilibrium, polycrystalline PdTe films on Si (100) substrates were synthesized only. The increase in temperature Si (100) substrate to T = 593-613 K has led to fabrication of mosaic single-crystal PdTe films with (100) texture. By SEM and AFM methods it has been found that under constant values of lead and tellurium vapour pressure synthesis an increase in the Si substrate temperature led to increase in crystallite average lateral dimension of PbTe film on Si (100) substrates. By AFM method it has established the tendency of the average surface roughness value increasing with average thickness for both polycrystalline and mosaic single crystal PbTe/Si (100) films. At the same average thickness values polycrystalline PbTe/Si (100) films are characterized by higher surface roughness compared to mosaic single-crystal PbTe (100) samples. It is suggested that of average surface roughness-to-film thickness ratio it can be used as a criterion of evaluation of surface contribution to functional properties of PbTe films. It has been shown that with optimum values of average roughness-to-thickness ratio mosaic single-crystal PdTe (100) films with thickness over 1.2 μm are characterized.
ACKNOWLEDGEMENTS
The research was carried out using the equipment of the Centre for Collective Use of Scientific Equipment of Voronezh State University.
Downloads
References
2. Infrared Detectors and Emitters: Materials and Devices / Eds. by Peter Capper and C. T. Elliot. Springer Science + Business Media, LLC, 2001, 498 p. DOI: 10.1007/978-1-4615-1607-1
3. Rogalski A. Infrared Detectors, Second Edition. CRC Press. Taylor & Francis Group, 2011, 898 p. DOI: 10.1201/b10319
4. Popescu A., Woods L. M. Appl. Phys. Lett., 2010, vol. 97, pp. 052102-01–052102-03. DOI: 10.1063/1.3464288
5. Shaibal Mukherjee, Donghui Li, Anurag Gautam, Jyoti P. Kar, Zhisheng Shi. Lead Salt Thin Film Semiconductors for Microelectronic Applications. Transworld Research Network, Kerala, India, 2010, 88 p.
6. Haotian Fan, Taichao Su, Hongtao Li, Shangsheng Li, Meihua Hu, Bingguo Liu, Baoli Du, Hongan Ma, Xiaopeng Jia. J. of Alloys and Compounds, 2016, vol. 658, pp. 885–890. DOI: 10.1016/j.jallcom.2015.10.021
7. Zogg H., Arnold M., Felder F., Rahim M., Fill M., Boye D. J. Electronic Materials, 2008, vol. 37, no. 9, pp. 1497–1503. DOI: 10.1117/12.797849
8. Samoylov A. M., Belenko S. V., Sharov M. K., Dolgopolova E. A., Zlomanov V. P. J. Cryst. Growth, 2012, vol. 351, pp. 149–154. DOI: 10.1016/j.jcrysgro.2012.01.042
9. Ryabova L. I., Khokhlov D. R. Physics–Uspekhi, 2014, vol. 57, no. 10, pp. 959–969. DOI: 10.3367/UFNe.0184.201410b.1033
10. Harman T. C., Taylor P. J., Walsh M. P., La Forge B. E. Science, 2002, vol. 297, pp. 2229–2232. DOI: 10.1126/science.1072886
11. Gelbstein Y., Dashevsky Z., Dariel M. P. Physica B: Condens. Matter., 2005, vol. 363, pp. 196–205. DOI: 10.1016/j.physb.2005.03.022
12. Li J. Q., Lu Z. W., Li S. M., Liu F. S., Ao W. Q., Li Y. Scripta Materialia, 2016, vol. 112, pp. 144–147. DOI: 10.1016/j.scriptamat.2015.09.036
13. Zogg H. Arnold M. Opto-Electronics Rev., 2006, vol. 14, no. 1, pp. 33–36. DOI: 10.2478/s11772-006-0005-1
14. Samoylov A. M., Belenko S. V., Siradze B. A., Toreev A. S., Dontsov A. I., Filonova I. V. Condensed Matter and Interphases, 2013, vol. 15, no. 3, pp. 322–331. Available at: http://www.kcmf.vsu.ru/resources/t_15_3_2013_016.pdf (in Russ.)
15. Akimov A. N., Klimov A. E., Samoylov A. M., Shumsky V. N., Epov V. S. Condensed Matter and Interphases, 2013, vol. 15, no. 4, pp. 375–381. Available at: http://www.kcmf.vsu.ru/resources/t_15_4_2013_001.pdf (in Russ.)
16. Hassan S., Gremenok V. F., Ivanov V. A. Problems of Physics, Mathematics and Techniques, 2014, vol. 18, no. 2, pp. 26–30. DOI: 10.1002/crat.201000440
17. Ugai Ya. A., Samoylov A. M., Sharov M. K., Tadeev A. V. Thin Solid Films, 1998, vol. 336, pp. 196–200. DOI: 10.1016/s0040-6090(98)01278-4
18. Mikhailov V. I., Volkov V. T., Eremenko V. G., Kanevsky V. M., Polyak L. E., Rakova E. V., Muslimov A. E., Kvartalov V. B. Surface. X-ray, Synchrotron and Neutron Studies, 2011, no. 6, pp. 97–102. DOI: org/10.1134/S1027451011060139
19. Ugai Ya., Samoilov A. M., Agapov B. A., Dolgopolova E. A., Sharov M. K. Inorganic Materials, 1998, vol. 34, no. 9, pp. 873–877. DOI https://doi.org/10.1023/A:1015410703238
20. Samoylov A. M. Directed Synthesis of Lead Telluride Thin Films Doped with Gallium and Indium with a Controlled Content of Impurity Atoms and Deviation from Stoichiometry. Doct. (Chem.) Diss. Thesis. Voronezh State University, Voronezh, 2006, 44 p.
21. JCPDS - International Centre for Diffraction Data. 1986-2008. JCPDS-ICDD. Newtown Square, PA 19073. USA. DOI: org/10.1017/s0885715600011325
22. Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Thin Solid Films, 2017, vol. 636, pp. 751–759. DOI:10.1016/j.tsf.2017.04.009