INFLUENCE OF PHYSICAL CONDITIONS ON WATER TRANSITION FROM ICE SURFACE BY THE DISPERSION MEDIUM AT LOW TEMPERATURES

  • Veronika I. Egochina Postgraduate Student of the Graduate School of Science and Technology, Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk, Russia; e-mail: egochina.vi@mail.ru
  • Anatoly V. Tyagunin Cand. Sci. (Phys.), Assistant Professor of the Graduate School of Science and Technology, Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk, Russia; e-mail: alastor15@yandex.ru
  • Gennady D. Koposov Cand. Sci. (Phys.), Assistant Professor of the Graduate School of Science and Technology, Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk, Russia; e-mail: g.koposov@narfu.ru
Keywords: moisture transition, temperature gradient, gravitational action, sand, ice, quasi-liquid layer.

Abstract

The purpose of the research was to test the possibility of using the ice surface as a generator of moisture in measuring the moisture conductivity of soils. The article presents the results of a study of the influence of various physical conditions on the moisture transition ice - dispersed medium at low temperatures. The experiments were carried out by weight method in the freezer with automatic temperature maintenance. To adjust the temperature, the freezer was equipped with a temperature sensor. Every day, readings of the mass of water transferred to the sample were obtained. The temperature range was chosen from -5 to -24 oC. The results of the study of the influence of factors such as: temperature, the presence of a temperature gradient in the direction of moisture transition, the effect of the gravitational field, the presence of impurities in the ice. Samples of the dispersed medium were selected inorganic: river sand, silica gel, white soot, kaolin (white) clay. NaOH, KOH alkalis and NaCl, KCl salts were used as impurities. Impurity concentration selected (%): 3.5, 1, 0.1, 0.01, and 0.001.

Two phases of the process of moisture transfer from the ice surface to the ground were identified: the first is associated with the movement of the diffusion flow; the second is associated with the transfer of moisture through the unfrozen water film. The driving force of the moisture flow is: gravitational action; temperature gradient and concentration gradient.

During the experiments, the influence of the selected factors on the moisture transfer of the ice – dispersed medium was revealed: 1) the greater the temperature, the greater the probability that the water molecules will be able to move in a larger volume to the ground; 2) the presence of salt contributes to the process of moisture transfer due to a decrease in the surface tension coefficient; 3) when certain conditions are created, the moisture transfer is carried out in the opposite direction to the ice-sand contact.

Downloads

Download data is not yet available.

References

1. Novikov E. A., Shkuratnik V. L. Oshkin R. O. Earth’s Cryosphere, 2016, vol. 20, no. 1, pp. 91–94. Available at: http://www.izdatgeo.ru/pdf/earth_cryo/2016-1/91_eng.pdf
2. Anderson D. M. The Interface Between Ice and Silicate Surface. CRREL, USA, March 1967, 31 p.
3. Kozlowski T. Cold Regions Sci. and Technol., 2016, no. 122, pp. 18–25. DOI: https://doi.org/10.1016/j.coldregions.2015.10.009
4. Ershov E. D. Obshchaya Geokriologiya. Uchebnik [General Geocryology. Textbook] Moscow, Izd-vo MGU Publ., 2002, 682 p. (in Russ.)
5. Vidyapin I. Y., Cheverev V. G. Kriosfera Zemli [Earth’s Cryosphere], 2008, vol. 12, no. 4, pp. 43–45. Available at: http://www.izdatgeo.ru/pdf/krio/2008-4/43.pdf (in Russ.)
6. Kudryavcev V. A., Ershov E. D., Cheverev V. G. Vestn. MGU. Ser. Geologiya, 1973, no. 5, pp. 26–34. (in Russ.)
7. Starostin E. G., Lebedev M. P. Kriosfera Zemli [Earth’s Cryosphere], 2014, vol. 18, no. 3, pp. 46–54. Available at: http://www.izdatgeo.ru/pdf/krio/2014-3/46.pdf (in Russ.)
8. Cheverev V. G. Kriosfera Zemli [Earth’s Cryosphere], 2003, vol. 7, no. 2, pp. 30–34. (in Russ.)
9. Cheverev V. G. Kriosfera Zemli [Earth’s Cryosphere], 2006, vol. 11, no. 4, pp. 25–26. (in Russ.)
10. Golubev V. N., Vlaxova A. V., Rzhanicyn G. A., Semenova I. V. Kriosfera Zemli [Earth’s Cryosphere], 2018, vol. 22, no. 1, pp. 20–26. DOI: https://doi.org/10.21782/kz1560-7496-2018-1(20-26)
11. Zielke S. A., Bertram A. K., Patey G. N. J. Phys. Chem. B, 2016, vol. 120, pp. 1726−1734. DOI: https://doi.org/10.1021/acs.jpcb.5b09052
12. Roman L. T., Merzliakov V. P., Малеева А. Н. Kriosfera Zemli [Earth’s Cryosphere], 2017, vol. 21, no. 3, pp. 24–31. DOI: https://doi.org/10.21782/KZ1560-7496-2017-3(24-31)
13. Voronin A. D. Osnovy fiziki pochv: Ucheb. Posobie [Fundamentals of Soil Physics.] Moscow, Izd-vo Mosk. un-ta Publ., 1986, 244 p. (in Russ)
14. Shein E.V. Kurs fiziki pochv. Uchebnik [Soil Physics Course]. Moscow, Izd-vo MGU Publ., 2005. 432 p. (in Russ.)
15. Torrance J. K., Elliot T., Martin R. Cold Regions Sci. and Technol., 2008, vol. 53 (1), pp. 75–82. DOI: https://doi.org/10.1016/j.coldregions.2007.04.010
16. Shi Jie Chen, Shu Ping Zhao, Wei Ma, et al. Sci. Cold and Arid Regions, 2014, vol. I, iss. 2, pp. 107–115.
17. Romanenko K. A., Abrosimov K. N., Kurchatova A. N., Rogov V. V. Kriosfera Zemli [Earth’s Cryosphere], 2017, vol. 21, no. 4, pp. 75–81. DOI: https://doi.org/10.21782/KZ1560-7496-2017-4(75-81)
18. Istomin V. A., Chuvilin E. M., Buxanov B. A. Kriosfera Zemli [Earth’s Cryosphere], 2017, vol. 21, no. 6, pp. 134–139. DOI: https://doi.org/10.21782/KZ1560-7496-2017-6(134-139)
19. Istomin V. A., Chuvilin E. M., Bukhanov B. A., Uchida T. A. Cold Regions Sci. and Technol., 2017, no. 137, pp. 60–67. DOI: https://doi.org/10.1016/j.coldregions.2017.02.005
20. Tyagunin A. V., Koposov G. D. Mechanical Mixture of Granulated Ice With Sand. Thermal and Electrophysical Properties. Monograph. LAP LAMBERT Academic publishing GmbH & Co. KG, 2012. 188 p. (in Russ.)
21. Egochina V. I., Tyagunin A. V., Byligina A. V. Fizicheskij vestnik instituta estestvennyh nauk i tekhnologij SAFU. Sb. nauchn. tr., 2015, vol. 14, pp. 14-19. (in Russ.)
22. Deryagin B. V., Churaev N. V., Muller V. M. Poverhnostnye sily [Surface Forces]. Moscow, Nauka Publ., 1985, 398 p. (in Russ.)
Published
2018-12-17
How to Cite
Egochina, V. I., Tyagunin, A. V., & Koposov, G. D. (2018). INFLUENCE OF PHYSICAL CONDITIONS ON WATER TRANSITION FROM ICE SURFACE BY THE DISPERSION MEDIUM AT LOW TEMPERATURES. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 20(4), 587-595. https://doi.org/10.17308/kcmf.2018.20/634
Section
Статьи