ANALYSIS OF MORPHOLOGY AND COMPOSITION OF COATINGS BASED ON TITANIUM NITRIDE FORMED BY CONDENSATION METHOD WITH ION BOMBARDING

  • Pavel V. Orlov Cand. Sci. (Tech.), Lead Researcher of Siberian State Automobile and Highway University (SibADI), Omsk, Russia; tel.: +7 (3812) 650145, e-mail: orlov-pv@mail.ru
  • Dmitry N. Korotaev Dr. Sci. (Tech.), Associate Professor, Professor of Siberian State Automobile and Highway University (SibADI), Omsk, Russia; tel.: +7 (3812) 729979, korotaevd99@mail.ru
  • Sergey N. Nesov Cand. Sci. (Phys.-Math.), Junior Researcher, Laboratory of Physics of Nanomaterials and Heterostructures, Omsk Scientific Center SB RAS, Omsk, Russia; tel.: +7 (913) 6639018, e-mail: nesov55@mail.ru
  • Petr M. Korusenko Cand. Sci. (Phys.-Math.), Junior Researcher of the Laboratory of Physics of Nanomaterials and Heterostructures, Omsk Scientific Center SB RAS; Associate Professor of the Department of “Mechanical Engineering and Materials Science” of the Omsk State Technical University, Omsk, Russia; tel.: +7 (983) 6214220, e-mail: korusenko@obisp.oscsbras.ru
  • Sergey N. Povoroznyuk Cand. Sci. (Tech.), Associate Professor, Senior Researcher of the Laboratory of Physics of Nanomaterials and Heterostructures, Omsk Scientific Center SB RAS; Associate Professor of the Department of "Mechanical Engineering and Materials Science" of the Omsk State Technical University, Omsk, Russia; tel.: +7 (913) 1422386, e-mail: povorozn@obisp.oscsbras.ru
Keywords: titanium nitride, coating, condensation with ion bombardment, CIB, X-ray photoelectron spectroscopy, ion sputtering.

Abstract

The main objective of this paper was to study the morphology, composition and chemical state of coatings based on titanium nitride obtained using the condensation method with ion bombardment. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) were used to analyse the structure and composition of the coatings produced at different formation times.

It was determined that coatings formed at different times still have a sufficiently close chemical composition and contain titanium nitride (TiN), titanium oxynitride (TiNxO1-x), titanium oxide (TiOx) and titanium carbide (TiC). The paper demonstrates that the increase in the formation time of coatings leads to a decrease in the proportion of carbon in the amorphous state and an increase in the fraction of carbon which is a part of titanium carbides.  In the composition of coatings formed in 15 and 50 minutes, the fraction of carbon chemically bonded to titanium differs by a factor of two.

The XPS analysis with the Ar+ ion sputtering showed that the coatings have an uneven distribution of elements in depth.  It is demonstrated that with the increase in etching time, a significant decrease in the total carbon concentration in the coating is observed. At the same time, the proportion of carbon chemically bonded to titanium increases. It was also found that the TiN decreases, while the amount of TiNxO1-x and TiOx increases.  Basing on the data obtained, we propose descriptions for the dynamics of diffusion of carbon and oxygen and the formation of carbides, oxynitrides, and titanium oxides during the formation of coatings.

 

 

acknowledgment

            The authors are grateful to Ivlev K. E. for conducting the SEM study of the samples using the SEM method, as well as to the management of the Omsk Scientific Center SB RAS for providing the equipment for studying the samples using the SEM and EDX methods.

The work was financially supported by the Ministry of Education and Science of the Russian Federation as part of a state task, project No. 11.11760.2018 / 11.12.

Downloads

Download data is not yet available.

References

Yur'ev Yu. N., Mikhnevich K. S., Krivobokov V. P., Sidelyov D. V., Kiseleva D. V., Novikov V. А. Izvestiya Samarskogo nauchnogo tsentra RАN [News of the Samara Scientific Center of the Russian Academy of Sciences], 2014, vol. 16, no. 4-3, pp. 672—676. (in Russ.)
2. Fortuna S. V., Sharkeev Y. P., Perry A. J., Matossian J. N., Shulepov I. A. Thin Solid Films, 2000, vol. 377-378, pp. 512—517. DOI: https://doi.org/10.1016/s0040-6090(00)01438-3
3. Khamdokhov А. Z., Teshev R. Sh., Khamdokhov Z. M., Khamdokhov Eh. Z., Kalazhokov Z. Kh., Kalazhokov Kh. Kh. Poverkhnost'. rentgenovskie, sinkhrotronnye i nejtronnye issledovaniya [Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques], 2015, vol. 9, iss. 4, pp. 710 - 714 DOI: https://doi.org/10.1134/s1027451015040096
4. Jafari A., Ghoranneviss Z., Elahi A. S., M. Ghoranneviss, N. F. Yazdi, Rezaei A. Advances in Mechanical Engineering, 2014, Article ID 373847, pp. 1—6. DOI: http://dx.doi.org/10.1155/2014/373847
5. Krivobokov V. P., Sochugov N. S., Solov'ev А. А. Plazmennye pokrytiya (svojstva i primenenie) [Plasma Coatings (Properties and Applications).]. Tomsk, Tomsk Polytechnic University Publ., 2011, 136 p. (in Russ.)
6. Аndrievskij R. А., Umanskij Ya. S. Fazy vnedreniya [Intercalation Phases]. Moscow, Nauka Publ., 1977, 240 p. (in Russ.)
7. Goncharov V. S. Metody uprochneniya konstruktsionnykh materialov. Funktsional'nye pokrytiya: ehlektronnoe uchebnoe posobie [Methods of hardening structural materials. Functional Coverage: e-textbook.]. Tolyatti, TSU Publ., 2017, 205 p. (in Russ.)
8. Chan M., Lu F. Thin Solid Films, 2009, vol. 517, pp. 5006—5009. DOI: https://doi.org/10.1016/j.tsf.2009.03.100
9. Morales M., Cucatti S., Acuna J. J. S., Zagonel L. F., Antonin O., Hugon M. C., Marsot N., Bouchet-Fabre B., Minea T., Alvarez F. J. Phys. D: Appl. Phys., 2013 vol. 46 Article ID 155308, pp. 1—8. DOI: https://doi.org/10.1088/0022-3727/46/15/155308
10. Mohan L., Anandan C., Rajendran N. RSC Adv., 2015, vol. 5, pp. 41763—41771. DOI: https://doi.org/10.1039/C5RA05818J
11. Bolotov V. V., Kan V. E., Knyazev E. V., Davletkildeev N. A., Nesov S. N., Ponomareva I. V., Sokolov D. V., Korusenko P. M. AIP Conference Proceedings, 2017, vol.1876, Article ID 020063, pp. 1—7. DOI: https://doi.org/10.1063/1.4998883
12. Nesov S. N., Korusenko P. M., Povoroznyuk S. N., Bolotov V. V., Knyazev E. V., Smirnov D. A. Nuclear Instruments and Methods in Physics Research B, 2017, vol. 410, pp. 222—229. DOI: http://dx.doi.org/10.1016/j.nimb.2017.08.040
13. Dao V., Hoa N. T. Q., Larina L. L., Leed J., Choi H. Nanoscale, 2013, vol. 5, pp. 12237—12244. DOI: http://dx.doi.org/10.1039/C3NR03219A
14. Shah S. A., Habib T., Gao H., Gao P., Sun W., Green M. J., Radovic M. Chem. Commun, 2017, vol. 53, pp. 400—403. DOI: http://dx.doi.org/10.1039/C6CC07733A
15. Nesov S. N., Korusenko P. M., Bolotov V. V., Povoroznyuk S. N., Smirnov D. А. Phys. Solid State, 2017, vol. 59, iss. 10, pp 2030–2035. DOI https://doi.org/10.1134/S1063783417100286
16. Jaeger D., Patscheider J. Surface Science Spectra, 2013, vol. 20, pp. 1—8. DOI : https://doi.org/10.1116/11.20121107
17. Lin M. C., Chen M.-J., Chang L.-S. Applied Surface Science, 2010, vol. 256, pp. 7242—7245. DOI: https://doi.org/10.1016/j.apsusc.2010.05.058
18. Nakatsuka O., Hisada K., Oida S., Sakai A., Zaima S. Japanese Journal of Applied Physics, 2016, vol. 55, iss. 6S3, Article ID 06JE02, p. 06JE02. DOI: https://doi.org/10.7567/jjap.55.06je02
19. Lütjering G., Williams J.C. Titanium. Heidelberg, Springer Berlin, 2003, 442 p. DOI: https://doi.org/10.1007/978-3-540-71398-2
20. Zamulaeva E. I., Levashov E. А., Sviridova T. А., SHvyndina N. V., Petrzhik M. I. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional'nye pokrytiyaIzvestiya Vuzov [Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings], 2013, no. 3, pp. 73—81. DOI : https://doi.org/10.17073/1997-308X-2013-3-73-81 (in Russ.)
21. Zhu G., Wang W., Wang R., Zhao C., Pan W., Huang H., Du D., Wang D., Shu D., Dong A., Sun B., Jiang S., Pu Y. Materials, 2017, vol. 10, Article 1007, pp. 1—8. DOI: https://doi.org/10.3390/ma10091007
22. Farhadizadeh A. R., Amadeh A. A., Ghomi H. Communications in Theoretical Physics, 2017, vol. 68, pp. 678—686. DOI: https://doi.org/10.1088/0253-6102/68/5/678
Published
2018-12-17
How to Cite
Orlov, P. V., Korotaev, D. N., Nesov, S. N., Korusenko, P. M., & Povoroznyuk, S. N. (2018). ANALYSIS OF MORPHOLOGY AND COMPOSITION OF COATINGS BASED ON TITANIUM NITRIDE FORMED BY CONDENSATION METHOD WITH ION BOMBARDING. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 20(4), 630-643. https://doi.org/10.17308/kcmf.2018.20/638
Section
Статьи