The decisive role of biological factors in the corrosion of the D16T alloy. Review

  • Denis V. Belov Federal Research Centre Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova str., Nizhny Novgorod 603950, Russian Federation
  • Sergey N. Belyaev Federal Research Centre Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova str., Nizhny Novgorod 603950, Russian Federation
Keywords: Biocorrosion, Mycological corrosion, Duralumin, D16T, Zero-valent aluminium, ZVAl, Micromycetes, Microscopic fungi, Reactive oxygen species, ROS, Superoxide anion radical, Hydrogen peroxide, Intergranular corrosion, Pitting corrosion


The biocorrosion of duralumin grade D16T has been studied and a mechanism has been proposed according to which the initiators of initial corrosion damage are reactive oxygen species (ROS) produced by icromycetes. An assumption was made about the participation of hydrogen peroxide in the mycological corrosion of the D16T alloy, which is formed both during the life of micromycetes and during the activation of oxygen by zero-valent aluminium (ZVAl). The mechanisms of intergranular, pitting and pitting corrosion of duralumin under the influence of microscopic fungi are proposed. Purpose: determination of the main biological factor initiating biocorrosion of the D16T alloy; assessment of the biological impact of the association of microscopic fungi on the alloy in order to develop scientifically grounded and effective methods of protecting aluminium and its alloys from biocorrosion by micromycetes.

The object of the study was an aluminium alloy D16T in accordance with state standard (GOST) 4784–2019 after hardening and natural ageing, which is widely used for the manufacture of load-bearing elements of structures and equipment of fuel systems of aircraft, car bodies, parts of various machines and assemblies operating at low temperatures, and in the food and pharmaceutical industries. The stages of initiation and development of biocorrosion of the D16T alloy under the influence of a consortium of moulds have been studied using a scanning electron microscope. The phase composition of the D16T corrosion products has been studied.

In the process of vital activity of microscopic fungi, reactive oxygen species are formed, initiating the biocorrosion of the D16T alloy. The initial stage of biocorrosion is caused by hydrolysis of the protective passive aluminium film. At the stage of intense biocorrosion, oxygen-containing aluminium compounds are formed in the form of a water-saturated gel. Further, as this corrosion product accumulates, its water permeability decreases. The gel undergoes “ageing” and turns into crystalline products. Conidia and hyphae of microscopic fungi adhere, are mechanically fixed on the metal surface and penetrate into the surface layers and deep into the metal, causing its corrosive destruction in the form of pitting, ulcers, and cavities. It
is possible that the initiation of metal biocorrosion is a consequence of the hyperproduction of reactive oxygen species by the cells of micromycetes as a result of oxidative stress. This may be their defensive strategy aimed at destroying xenobiotic material.

The development of intergranular and pitting corrosion of the D16T alloy under the action of micromycetes occurs at the sites of contact with the exudate, which, due to a cascade of reactions with the participation of ROS, is locally enriched in hydroxide ions. The origin and development of pitting on the duralumin surface occurs in defects of the passive oxide film due to the displacement of oxygen-containing surface aluminium compounds and their interaction with corrosive OH– and ROS anions. Hydrogen peroxide, as an intermediate product of the metabolism of micromycetes, on the surface of the D16T alloy can participate in the Fenton process or decompose heterogeneously, also provoking the development of aluminium biocorrosion.


Download data is not yet available.

Author Biographies

Denis V. Belov, Federal Research Centre Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova str., Nizhny Novgorod 603950, Russian Federation

Cand. Sci. (Chem.), Associate
Professor, Senior Research Fellow

Sergey N. Belyaev, Federal Research Centre Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova str., Nizhny Novgorod 603950, Russian Federation

Cand. Sci. (Chem.), Researcher,


Kolesnikova N. N., Lukanina Yu. K., Khvatov A. V. Biological corrosion of metal structures and protection against it. Bulletin of the Kazan Technological University. 2013;16(1): 170–174. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar

Lekbach Y., Liu T., Li Y., Moradi M., Dou W., Xu D., Smith J. A., Lovley D. R. Microbial corrosion of metals: The corrosion microbiome. Advances in Microbial Physiology. 2021;78: 317–390.

Tang H. Y., Yang C., Ueki T., Pittman C. C., Xu D., Woodard T. L., Holmes D. E., Gu T., Wang F., Lovley D. R. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. The ISME Journal: Multidisciplinary Journal of Microbial Ecology. 2021;15: 3084–3093.

Tang H. Y., Holmes D. E., Ueki T., Palacios P. A., Lovley D. R. Iron corrosion via direct metal-microbe electron transfer. mBio. 2019;10(3): e00303-19.

Deutzmann J. S., Sahin M., Spormann A. M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio. 2015;6(2): e00496-15.

Costerton J. W., Geesey G. G., Cheng K. J. How bacteria stick. Scientific American. 1978;238(1): 86–95.

Li X., Duan J., Xiao H., Li Y., Liu H., Guan F., Zhai X. Analysis of bacterial community composition of corroded steel immersed in sanya and xiamen seawaters in China via method of illumina MiSeq Sequencing.. Frontiers in Microbiology. 2017;8: 1737.

Cetin D., Aksu M. L. Corrosion behavior of lowalloy steel in the presence of Desulfotomaculum sp. Corrosion Science. 2009;51(8): 1584–1588.

Wikieł A. J., Datsenko I., Vera M., Sand W. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry. 2014;97: 52–60.

Zhang P., Xu D., Li Y., Yang K., Gu T. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry. 2015;101: 14–21.

McBeth J. M., Emerson D. In situ microbial community succession on mild steel in estuarine and marine environments: Exploring the role of ironoxidizing bacteria. Frontiers in Microbiology. 2016; 7.

Dinh H. T., Kuever J., Mußmann M., Hassel A. W., Stratmann M., Widdel F. Iron corrosion by novel anaerobic microorganisms. Nature. 2004;427(6977): 829–832.

Beech I. B., Gaylarde C. C. Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces. Journal of Applied Bacteriology. 1989;67(2): 201–207. j.1365-2672.1989.tb03396.x

Zottola E. A. Characterization of the attachment matrix of Pseudomonas fragi attached to non-porous surfaces. Journal of Bioadhesion and Biofilm Research. 1991;5(1-2): 37–55.

Siqueira V. M., Lima, N. Biofilm formation by filamentous fungi recovered from a water system. Journal of Mycology. 2013; Article ID 152941: 1–9.

Fox E. P., Singh-Babak S. D., Hartooni N., Nobile C. J. Biofilms and antifungal resistance. Antifungals: From Genomics to Resistance and the Development of Novel Agents. 2015; 71–90.

Müller F.-M. C., Seidler M., Beauvais A. Aspergillus fumigatus biofilms in the clinical setting. Medical Mycology. 2011;49(S1): S96–S100.

Reichhardt C., Ferreira J. A. G., Joubert L.-M., Clemons K. V., Stevens D. A., Cegelski L. Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. ASM Journals. Eukaryotic Cell. 2015;14(11): 1064–1072.

Donlan R. M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases. 2002;8(9): 881–890.

Gorbushina A. A., Panina L. K. Adhesion of micromycete conidia to polymeric materials. Mycology and Phytopathology. 1992;26(5): 372–377. (In Russ.)

Kalinina I. G. , Gumargalieva K. Z. , Kuznetsova O. N., Zaikov G. E. Interrelation of adhesion of conidia of the microscopic fungus Trichoderma viride with the electrochemical properties of metals. Bulletin of the Kazan Technological University. 2012;15(12): 115–118. (In Russ., abstract in Eng.). Available at:

Joubert L.-M., Ferreira J. A., Stevens D. A., Nazik H., Cegelski L. Visualization of Aspergillus fumigatus biofilms with scanning electron microscopy and variable pressure-scanning electron microscopy: A comparison of processing techniques. Journal of Microbiological Methods. 2017;132: 46–55.

González-Ramírez A.I., Ramírez-Granillo A., Medina-Canales M. G., Rodríguez-Tovar A. V., Martínez-Rivera M. A. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiology. 2016;16, 243.

Villena G. K., Fujikawa T., Tsuyumu S., Gutiérrez-Correa M. Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy. Bioresource Technology. 2010;101(6): 1920–1926.

Denkhaus E., Meisen S., Telgheder U., Wingender J. Chemical and physical methods for characterisation of biofilms. Microchimica Acta. 2007;158(1-2): 1–27.

Beech I. B., Sunner J. A., Hiraoka K. Microbe–surface interactions in biofouling and biocorrosion processes. International Microbiology. 2005;8: 157–168.PMID: 16200494. V8I3.9522

Beech I. B., Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology. 2004;15(3): 181–186.

Yang S. L., Chung K. R. The NADPH-oxidasemediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Molecular Plant Pathology. 2012;13(8): 900–914.

Gessler N. N., Averyanov A. A., Belozerskaya T. A. Reactive oxygen species in the regulation of fungal development (Review). Biochemistry. 2007;72(10): 1091–1109.

Gamaley I. L., Klyubin N. N. The role of hydrogen peroxide as a second messenger. Tsitologiya. 1996;38(12): 1242-1247. Available at:

Barsukova M. E., Veselova I. A., Shekhovtsova T. N. Main methods and approaches to the determination of markers of oxidative stress - organic peroxide compounds and hydrogen peroxide. Journal of Analytical Chemistry. 2019;74(5): 425-436.

Hansberg W., Aguirre J. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. Journal of Theoretical Biology. 1990;142(2): 201–221. PMID: 2352433.

Sideri M., Georgiou C. D. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron. Mycologia. 2000;92(6): 1033–1042.

Tkachuk V. A. , Tyurin-Kuzmin P. A. , Belousov V. V., Vorotnikov A. V. Hydrogen peroxide as a new secondary Messenger. Biological Membranes. 2012;29(1–2): 21–37. (In Russ., abstract in Eng.). Available at:

Zúñiga-Silva J. R., Chan-Cupul W., Kuschk P., Loera O., Aguilar-López R., Rodríguez-Vázquez R. Effect of Cd+2 on phosphate solubilizing abilities and hydrogen peroxide production of soil-borne micromycetes isolated from Phragmites australisrhizosphere. Ecotoxicology. 2015;25(2): 367–379.

Zhang J., Miao Y., Rahimi M. J., Zhu H., Steindorff A., Schiessler S., Cai F., PangG., Chenthamara K., Xu Y., Kubicek C. P., Shen Q., Druzhinina I. S. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environmental Microbiology. 2019;21(8): 2644–2658

Stosz S. K., Fravel D. R., Roberts D. P. In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Applied and Environmental Microbiology. 1996;62(9): 3183–3186.

Murray F. R., Llewellyn D. J., Peacock W. J.,Dennis E. S. Isolation of the glucose oxidase gene from Talaromyces flavus and characterisation of its role in the biocontrol of Verticillium dahliae. Current Genetics. 1997;32(5): 367–375.

Yang C.-A., Cheng C.-H., Lo C.-T., Liu S.-Y., Lee J.-W., Peng K.-C. A Novell-Amino Acid Oxidase from Trichoderma harzianum ETS 323 Associated with Antagonism of Rhizoctonia solani. Journal of Agricultural and Food Chemistry. 2011;59(9): 4519–4526.

Smirnova I. P., Karimova E. V., Shneider Y. A. Antibacterial Activity of L-Lysine-a-Oxidase from the Trichoderma. Bulletin of Experimental Biology and Medicine. 2017;163(6): 777–779.

Heller J., Tudzynski P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annual Review of Phytopathology. 2011;49(1): 369–390.

Mentges M., Bormann J. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum. Scientific Reports. 2015;5(1), 14980: 1–10.

Eichlerová I., Homolka L., Lisá L., Nerud F. The influence of extracellular H2O2 production on decolorization ability in fungi. Journal of Basic Microbiology. 2006;46(6): 449–455.

Zhao J., Janse B. J. H. Comparison of H2O2-producing enzymes in selected white rot fungi. FEMS Microbiology Letters. 1996;139(2-3): 215–221.

Wiberth C.-C., Casandra A.-Z. C., Zhiliang F., Gabriela H. Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures. Annals of Microbiology. 2019;69: 171–181.

Zhao Y., Li J., Chen Y., Hang H. Response to oxidative stress of Coriolus versicolor induced by exogenous hydrogen peroxide and paraquat. Annals of Microbiology. 2009;59(2): 221–227.

Hansel C. M., Zeiner C. A., Santelli C. M., Webb S. M. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexualreproduction. Proceedings of the National Academy of Sciences. 2012;109(31): 12621–12625.

Hayyan M., Hashim M. A., AlNashef I. M. Superoxide Ion: Generation and Chemical Implications. Chemical Reviews. 2016;116(5): 3029–3085.

Winterbourn C. C. Biological chemistry of superoxide radicals. ChemTexts (The Textbook Journal of Chemistry). 2020;6(1): 7.

Janik I., Tripathi G. N. R. The nature of the superoxide radical anion in water. The Journal of Chemical Physics. 2013;139(1): 014302-1–014302-7.

Belov D. V., Chelnokova M. V., Kalinina A. A., Sokolova T. N., Smirnov V. F., Kartashov V. R. Active oxygen species in metal corrosion. Corrosion: Materials, Protection. 2011;3: 19–26. (In Russ.). Available at:

Belov D. V., Chelnokova M. V., Sokolova T. N., Smirnov V. F., Kalinina A. A., Kartashov V. R. Generation of superoxide radical anion by micromycetes and its role in metal corrosion. ChemChemTech. 2011;54(10):133–136. (In Russ.). Available at:

De Grey A. D. N. J. HO2 •: The Forgotten Radical. DNA and Cell Biology. 2002;21(4): 251–257.

Bielski B. H. J., Allen A. O. Mechanism of the disproportionation of superoxide radicals. Journal of Physical Chemistry. 1977;81(11): 1048–1050.

Xu W., Yu F., Yang L., Zhang B., Hou B., Li Y. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin. Materials Science and Engineering: C. 2018;92:11–19.

Yu F., Addison O., Davenport A. J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomaterialia. 2015;26: 355–365.

Miyazawa T., Terachi T., Uchida S., Satoh T., Tsukada T., Satoh Y., Wada Y., Hosokawa H. Effects of hydrogen peroxide on corrosion of stainless steel, (V) characterization of oxide film with multilateral surface analyses. Journal of Nuclear Science and Technology.2006;43(8): 884–895.

Dong C., Yuan C., Bai X., Li J., Qin H., Yan X. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments. Scientific Reports. 2017;7(1): 2327.

Singh A. , Chaudhar y V. , Sharma A. Electrochemical studies of stainless steel corrosion in peroxide solutions. Portugaliae Electrochimica Acta. 2012;30(2): 99–109.

Mabilleau G., Bourdon S., Joly-Guillou M. L., Filmon R., Baslé M. F., Chappard D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomaterialia. 2006;2(1): 121–129.

Furiya-Sato S., Fukushima A., Mayanagi G., Sasaki K., Takahashi N. Electrochemical evaluation of the hydrogen peroxide- and fluoride-induced corrosive property and its recovery on the titanium surface. Journal of Prosthodontic Research. 2020;64(3): 307–312.

Yu F., Addison O., Davenport A. J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomaterialia. 2015;26: 355–365.

Been J., Tromans D. Titanium corrosion in alkaline hydrogen peroxide. Corrosion. 2000;56(8): 809–818.

Handbook of electrochemistry. A. M. Sukhotin (Ed.). Leningrad: Chemistry Publ.; 1981. 488 p. (In Russ.)

Antonchenko V. Ya., Davydov A. S., Ilyin V. V. Fundamentals of water physics. AN Ukrainian SSR. Institute of Theoretical Physics. Kyiv: Naukova dumka Publ.; 1991. 672 p. (In Russ.)

Handbook. Structure and corrosion of metals and alloys: Atlas. Moscow: Metallurgy Publ.; 1989. 400 p. 67. Moon S.-M., Pyun S.-I. The formation and dissolution of anodic oxide films on pure aluminum in alkaline solution. Electrochimica Acta. 1999;44: 2445–2454.

Davis G. D., Moshier W. C., Long G. G., Black D. R. Passive film structure of supersaturated Al-Mo alloys. Journal of the Electrochemical Society. 1991; 138(11): 3194–3198.

Nguyen L., Hashimoto T., Zakharov D. N., Stach E. A., Rooney A. P., Berkels B., Burnett T. L. Atomic-scale insights into the oxidation of aluminum. ACS Applied Materials & Interfaces. 2018;10(3): 2230–2235.

Hunter M. S., Fowle P. Natural and thermally formed oxide films on aluminum. Journal of the Electrochemical Society. 1956;103(9): 482–485.

Gulbransen Earl A., Wysong W. S. Thin Oxide Films on Aluminum. Journal of Physical Chemistry. 1947;51(5): 1087–1103.

Vargel C. Corrosion of aluminium. Hardbound: Elsevier; 2004. 700 p.73. Gromov A. A., Il’in A. P., Foerter-Barth ., Teipel U. D. Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combustion, Explosion and Shock Waves. 2006;42(2): 177–184.

Larichev M. N., Laricheva O. O., Leipunsky I. O., Pshechenkov P. A., Zhigach A. N., Kuskov M. L., Sedoy V. S. New “reactive” coatings for passivation surfaces of nanosized Al particles intended for energy use. Khimicheskaya fizika. 2006;25(10): 72–79. (In Russ.). Available at: https://w w w.elibrar

Deng Z. Y., Ferreira J. M. F., Tanaka Y., Ye J. Physicochemical mechanism for the continuous reaction of g-Al2O3 modified Al powder with water. Journal of the American Ceramic Society. 2007;90(5): 1521–1526. 1551-2916.2007.01546.x

Fernandez A., Sanchez-Lopez J. C., Caballero A. Characterization of nanophase Al-oxide/Al powders by electron energy-loss spectroscopy. Journal of Microscopy. 1998;191: 212–220.

Razavi-Tousi S. S., Szpunar J. A. Mechanism of corrosion of activated aluminum particles by hot water. Electrochimica Acta. 2014;127: 95–105.

Lozhkomoev A. S., Glazkova E. A., Bakina O. V., Lerner M. I., Gotman I., Gutmanas E. Y., Kazantsev S. O., Psakhie S. G. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water. Nanotechnology. 2016;27(20): 205603 (7 pp).

Kanehira S., Kanamori S., Nagashima K., Saeki T., Visbal H., Fukui T. Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions. Journal of Asian Ceramic Societies. 2013;1: 296–303.

Bunker B. C., Nelson G. C., Zavadil K. R., Barbour J. C., Wall F. D., Sullivan J. P., Windisch C. F., Engelhardt M. H., Baer D. R. Hydration of passive oxide films on aluminum. The Journal of Physical Chemistry B. 2002;18(106): 4705–4713.

Fateev Yu. F., Vrzhosek G. G., Antropov L. I. On the corrosion of aluminum in alkali solutions. Bulletin of the Kiev Polytechnic Institute. Series: Сhemical Engineering and Technology. 1979;16: 60–63. (In Russ.). Available at: https://w w w.elibrar

Grigor’eva I. O., Dresvyannikov A. F. Corrosion and electrochemical behavior of aluminum in solutions of potassium and lithium hydroxides. Bulletin of the Kazan Technological University. 2012;15(14): 199–202. (In Russ., abstract in Eng.). Available at:

Grigoryeva I. O., Dresvyannikov A. F., Masnik O. Yu., Zakirov R. A. Electrochemical behavior of aluminum in solutions of ammonium hydroxide and sodium hydroxide. Bulletin of the Kazan Technological University. 2011;6: 72–78. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar

Pyun S. I., Moon S. M. Corrosion mechanism of pure aluminium in aqueous alkaline solution. Journal of Solid State Electrochemistry. 2000;5(4): 267–272.

Bryan J. M. Aluminium and aluminium alloys in the food industry with special reference to corrosion and its prevention. Department of Science and Industrial Research. Food Investigation Special Report. London: H. M. Stationery Office; 1948;50: p. 153.

Laptev A. B., Lutsenko A. N., Kurs M. G., Bukharev G. M. Experience studies of bio-corrosion of metals. Theory and Practice of Corrosion Protection. 2016;2(80): 36–57. (In Russ., absract in Eng.). Available at:

Nardy K., Johannes A.V. The dual role of microbes in corrosion. The ISME Journal. 2015;9(3): 542–551.

Smirnov V. F., Belov D. V., Sokolova T. N., Kuzina O. V., Kartashov V. R. Microbiological corrosion of aluminum alloys. Applied Biochemistry and Microbiology. 2008;44: 192–196.

Belov D. V., Belyaev S. N., Maksimov M. V., Gevorgyan G. A. Research of corrosion fracture of D16T and AMg6 aluminum alloys exposed to microscopic fungi. Voprosy Materialovedeniya. 2021;3(107): 163–183.

Belov D. V., Chelnokova M. V., Sokolova T. N., Smirnov V. F., Kartashov V. R. On the role of reactive oxygen species in the initiation of corrosion of metals by microscopic fungi. Korroziya: Materialy, Zashchita. 2009;11: 43–48. (In Russ.). Available at:

Koval E. Z., Sidorenko L. P. Microdestructors of industrial materials. Kyiv: Naukova Dumka Publ.; 1989.192 p. (In Russ.)

Sutton D. A, Fothergill A. W, Rinaldi M. G. Guide to clinically significant fungi. Baltimore: Williams & Wilkins; 1997. 471 p.

Berridge M. V., Herst P. M., Tan A. S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review. 2005;11: 127–152.

Seidler E. The tetrazolium-fomazan system: design and histochemistry. Progress in Histochemistry and

ytochemistry. 1991;24(1): 1–79.

Altman F. P. Tetrazolium salts and formazans. Progress in Histochemistry and Cytochemistry. 1976;9(3): 3–51.

Rotilio G., Bray R. C., Fielden E. M. A pulse radiolysis study of superoxide dismutase. Biochimica et Biophysica Acta (BBA) - Enzymology. 1972;268(2): 605–609.

Fridovich I. Superoxide Radical and Superoxide Dismutases. Annual Review of Biochemistry. 1995;64(1): 97–112 .

Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochemical Journal. 1974;139(1): 49–60.

Kalinina A. A., Belov D. V., Chelnokova M. V., Sokolova T. N., Moskvichev A. N., Razov E. N., Kartashov V. R. Electron acceptor compounds in the study of biocorrosion phenomena. Korroziya: Materialy, Zashchita. 2011;12:29–32. (In Russ.). Available at:

Sirota T. V. A Chain reaction of adrenaline autoxidation is a model of quinoid oxidation of catecholamines. Biophysics. 2020;65(4): 548–556.

Misra H. P., Fridovich I. The univalent reduction of oxygen by reduced flavins and quinones. Journal of Biological Chemistry. 1972;247(1): 188–192.

Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry. 1972;247(10): 3170–3175.

Bors W., Michel C., Saran M., Lengfelder E. Kinetic investigations of the autoxidation of adrenalin. Zeitschrift Für Naturforschung C. 1978;33(11-12): 891–896.

Burns J. M., Cooper W. J., Ferry J. L., King D. W., DiMento B. P., McNeill K., Miller C. J., Miller W. L., Peake B. M., Rusak S. A., Rose A. L. Waite T. D. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences. 2012;74(4): 683–734.

MacNevin W. M., Urone P. F. Separation of hydrogen peroxide from organic hydroperoxides. Analytical Chemistry. 1953;25(11): 1760–1761.

Pobiner H. Determination of hydroperoxides in hydrocarbon by conversion to hydrogen peroxide and measurement by titanium complexing. Analytical Chemistry. 1961;33(10): 1423–1426.

Bunker B. C., Nelson G. C., Zavadil K. R., Barbour J. C., Wall F. D., Sullivan J. P., Windisch C. F., Engelhardt M. H., Baer D. R. Hydration of passive oxide films on aluminum. Journal of Physical Chemistry B. 2002;106(18): 4705–4713.

Belitskus D. Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. Journal of the Electrochemical Society. 1970;117: 1097–1099.

Heusler K. E., Allgaier W. Die kinetik der auflosung von aluminium in alkalischen losungen. Werkstoffe und Korrosion. 1971; 22(4): 297–302.

Ribeiro T., Motta A., Marcus P., Gaigeot M.-P., Lopez X., Costa D. Formation of the OOH radical at steps of the boehmite surface and its inhibition by gallic acid: A theoretical study including DFT-based dynamics. Journal of Inorganic Biochemistry. 2013;128: 164–173.

Ren T., Yang S., Jiang Y., Sun X., Zhang Y. Enhancing surface corrosion of zero-valent aluminum (ZVAl) and electron transfer process for the degradation of trichloroethylene with the presence of persulfate. Chemical Engineering Journal. 2018;348: 350–360.

Meredith C., Hamilton T. P., Schaefer H. F. Oxywater (water oxide): new evidence for the existence of a structural isomer of hydrogen peroxide. The Journal of Physical Chemistry. 1992;96(23): 9250–9254.

Jursic B. S. Density functional theory and ab initio study of oxywater isomerization into hydrogen peroxide. Journal of Molecular Structure: THEOCHEM. 1997;417(1-2): 81–88.

Franz J., Francisco J. S., Peyerimhoff S. D. Production of singlet oxygen atoms by photodissociation of oxywater. The Journal of Chemical Physics. 2009; 130 (8): 084304.

Chumakov A. A. , Kotelnikov O. A. , Slizhov Yu. G., Minakova T. S. Substantiation of the generation of oxywater zwitterions and singlet oxygen atoms from hydrogen peroxide molecules in aqueous solutions. Bulletin of the South Ural State University. Series “Chemistry”. 2018;10(4): 44–59. (In Russ., abstract in Eng.).

Shaitura N. S., Laricheva O. O., Larichev M. N. Study of the mechanism of low-temperature oxidation of microsized aluminum powder with water. Chemical Physics. 2019;38(3): 9–23. (In Russ.).

Larichev M. N. Reaction of aluminum powders with liquid water and steam. In: (2014). Metal Nanopowders. Gromov A., Teipel U. (Eds.). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. W.; 2014. p. 163.

Larichev M. N., Laricheva O. O., Leipunsky I. O., Pshechenkov P. A. The reaction of aluminum particles with liquid water and water vapor is a promising source of hydrogen for the needs of hydrogen energy. Proceedings of the Russian Academy of Sciences. Energy. 2007;5: 125–139. (In Russ.). Available at:

Zang J., Klasky M., Letellier B.C. The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear Materials. 2009;384(2): 175–189.

Deng Z.-Y., Ferreira J. M. F., Tanaka Y., Ye J. Physicochemical mechanism for the continuous reaction of g-Al2O3-modified aluminum powder with water. Journal of the American Ceramic Society. 2007; 90 (5): 1521–1526.

Rosliza R., Izman S. SEM-EDS characterization of natural products on corrosion inhibition of Al-Mg- Si alloy. Protection of Metals and Physical Chemistry of Surfaces. 2011;47: 395–401.

Song W., Du J., Xu Y., Long B. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes. Journal of Nuclear Materials. 1997; 246(2–3): 139–143.

Ulanovskiy I. B. Hydrogen diffusion and porosity formation in aluminium. I. B. Ulanovskiy (Ed.). Moscow: Izdatelskiy Dom ‘MISIS’ Publ., 2015. p. 122.

Kaspzyk-Hordern B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Advances in Colloid and Interface Science. 2004;110(1–2): 19–48.

Belov D. V., Sokolova T. N., Smirnov V. F., Kuzina O. V., Kostyukova L. V., Kartashov V. R. Corrosion of aluminum and its alloys under the effect of microscopic fungi. Protection of Metals and Physical Chemistry of Surfaces. 2008;44: 737–742.

Belov D. V., Belyaev S. N., Maksimov M. V., Gevorgyan G. A. On mechanism of biocorrosion of aluminum alloys D16T and AMg6 (Review). Korroziya: Materialy, Zashchita. 2021;10: 1–10. (In Russ.).

Lee S., Shin J. H., Choi M. Y. Watching the growth of aluminum hydroxide nanoparticles from aluminum nanoparticles synthesized by pulsed laser ablation in aqueous surfactant solution. Journal of Nanoparticle Research. 2013;15: 1473–1480.

Wefers K., Misra C., Bridenbaugh P. Oxides and hydroxides of aluminum. Alcoa Laboratories. 1987. 92 p.

Ahmed M., Qi Y., Zhang L., Yang Y., Abas A., Liang J., Cao B. Influence of Cu2+ ions on the corrosion resistance of AZ31 magnesium alloy with microarc xidation. Materials. 2020;13(11): 2647.

Sinyavsky V. S., Valkov V. D., Kalinin V. D. Corrosion and protection of aluminum alloys. Moscow: Metallurgiya Publ.; 1986. 386 p. (In Russ.)

Beaunier L. Corrosion of grain boundaries: initiation processes and testing. Journal of Physique Colloques. 1982;43(C6): 271–282.

Krymsky S. V., Ilyasov R. R., Avtokratova E. V., Sitdikov O. Sh., Markushe M. V. Intergranular corrosion of cryorolled and aged aluminum alloy D16. Protection of Metals and Physical Chemistry of Surfaces. 2017;53:


Abramova M. G., Goncharov A. A. Intergranular corrosion of wrought aluminum alloys during fullscale and full-scale accelerated climatic tests. Proceedings of VIAM. 2019;11(83): 85–94. (In Russ.,abstract in Eng.).

How to Cite
Belov, D. V., & Belyaev, S. N. (2022). The decisive role of biological factors in the corrosion of the D16T alloy. Review. Condensed Matter and Interphases, 24(2), 155-181.