Об определяющей роли биологических факторов в коррозии сплава Д16Т. Обзор
Аннотация
Изучена биокоррозия дюралюминия марки Д16Т и предложен механизм, согласно которому инициаторами начальных коррозионных повреждений являются активные формы кислорода (АФК), продуцируемые микромицетами. Сделано предположение об участии в микологической коррозии сплава Д16Т пероксида водорода, образующегося как в процессе жизнедеятельности микромицетов, так и при активации кислорода нульвалентным алюминием (ZVAl). Предложены механизмы межкристаллитной, питтинговой и язвенной коррозии дюралюминия в условиях воздействия микроскопических грибов. Цель статьи - Определение основного биологического фактора,
инициирующего биокоррозию сплава Д16Т; оценка биологического воздействия ассоциации микроскопических грибов на сплав с целью разработки научно обоснованных и эффективных методов защиты алюминия и его сплавов от биокоррозии микромицетами.
Объектом исследования был выбран сплав алюминия Д16Т в соответствии с ГОСТ 4784-2019 после закалки и естественного старения, широко применяющийся для изготовления силовых элементов конструкций и оборудования топливных систем самолетов, кузовов автомобилей, деталей различных машин и агрегатов, работающих при низких температурах, в пищевой и фармацевтической промышленности. С помощью сканирующего электронного микроскопа изучены стадии инициирования и развития биокоррозии сплава Д16Т в условиях воздействия консорциума плесневых грибов. Изучен фазовый состав продуктов коррозии Д16Т.
В процессе жизнедеятельности микроскопических грибов образуются активные формы кислорода, инициирующие биокоррозию сплава Д16Т. Начальная стадия биокоррозии обусловлена гидролизом защитной пассивной пленки алюминия. На стадии интенсивной биокоррозии образуются кислородсодержащие соединения алюминия в виде водонасыщенного геля. Далее происходит наработка этого продукта коррозии и уменьшение его водопроницаемости. Гель подвергается «старению» и превращается в кристаллические продукты. Конидии и гифы микроскопических
грибов адгезируются, механически закрепляются на поверхности металла и проникают в поверхностные слои и вглубь металла, вызывая его коррозионные разрушения в виде питтингов, язв и каверн. Не исключено, что инициирование биокоррозии металлов является следствием гиперпродукции клетками микромицетов активных форм кислорода в результате окислительного стресса. Это может являться их защитной стратегией, направленной на разрушение ксенобиотического материала.
Развитие межкристаллитной и точечной (питтинговой) коррозии сплава Д16Т под действием микромицетов происходит в местах контакта с экссудатом, который за счет протекания каскада реакций с участием АФК локально обогащается гидроксид-ионами. Зарождение и развитие питтинга на поверхности дюралюминия протекает в дефектах пассивной оксидной пленки вследствие вытеснения кислородсодержащих поверхностных соединений алюминия и их взаимодействия с коррозионно-активными анионами OH– и АФК. Пероксид водорода, как промежуточный продукт метаболизма микромицетов, на поверхности сплава Д16Т может участвовать в фентоновском процессе или гетерогенно разлагаться, также провоцируя развитие биокоррозии алюминия.
Скачивания
Литература
Kolesnikova N. N., Lukanina Yu. K., Khvatov A. V. Biological corrosion of metal structures and protection against it. Bulletin of the Kazan Technological University. 2013;16(1): 170–174. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar y.ru/item.asp?id=18726011
Lekbach Y., Liu T., Li Y., Moradi M., Dou W., Xu D., Smith J. A., Lovley D. R. Microbial corrosion of metals: The corrosion microbiome. Advances in Microbial Physiology. 2021;78: 317–390. https://doi.org/doi:10.1016/bs.ampbs.2021.01.002
Tang H. Y., Yang C., Ueki T., Pittman C. C., Xu D., Woodard T. L., Holmes D. E., Gu T., Wang F., Lovley D. R. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. The ISME Journal: Multidisciplinary Journal of Microbial Ecology. 2021;15: 3084–3093. https://doi.org/10.1038/s41396-021-00990-2
Tang H. Y., Holmes D. E., Ueki T., Palacios P. A., Lovley D. R. Iron corrosion via direct metal-microbe electron transfer. mBio. 2019;10(3): e00303-19. https://doi.org/10.1128/mBio.00303-19
Deutzmann J. S., Sahin M., Spormann A. M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio. 2015;6(2): e00496-15. https://doi.org/10.1128/mbio.00496-15
Costerton J. W., Geesey G. G., Cheng K. J. How bacteria stick. Scientific American. 1978;238(1): 86–95. https://doi.org/10.1038/scientificamerican0178-86
Li X., Duan J., Xiao H., Li Y., Liu H., Guan F., Zhai X. Analysis of bacterial community composition of corroded steel immersed in sanya and xiamen seawaters in China via method of illumina MiSeq Sequencing.. Frontiers in Microbiology. 2017;8: 1737. https://doi.org/10.3389/fmicb.2017.01737
Cetin D., Aksu M. L. Corrosion behavior of lowalloy steel in the presence of Desulfotomaculum sp. Corrosion Science. 2009;51(8): 1584–1588. https://doi.org/10.1016/j.corsci.2009.04.001
Wikieł A. J., Datsenko I., Vera M., Sand W. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry. 2014;97: 52–60. https://doi.org/10.1016/j.bioelechem.2013.09.008
Zhang P., Xu D., Li Y., Yang K., Gu T. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry. 2015;101: 14–21. https://doi.org/10.1016/j.bioelechem.2014.06.010
McBeth J. M., Emerson D. In situ microbial community succession on mild steel in estuarine and marine environments: Exploring the role of ironoxidizing bacteria. Frontiers in Microbiology. 2016; 7. https://doi.org/10.3389/fmicb.2016.00767
Dinh H. T., Kuever J., Mußmann M., Hassel A. W., Stratmann M., Widdel F. Iron corrosion by novel anaerobic microorganisms. Nature. 2004;427(6977): 829–832. https://doi.org/10.1038/nature02321
Beech I. B., Gaylarde C. C. Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces. Journal of Applied Bacteriology. 1989;67(2): 201–207. https://doi.org/10.1111/ j.1365-2672.1989.tb03396.x
Zottola E. A. Characterization of the attachment matrix of Pseudomonas fragi attached to non-porous surfaces. Journal of Bioadhesion and Biofilm Research. 1991;5(1-2): 37–55. https://doi.org/10.1080/08927019109378227
Siqueira V. M., Lima, N. Biofilm formation by filamentous fungi recovered from a water system. Journal of Mycology. 2013; Article ID 152941: 1–9. https://doi.org/10.1155/2013/152941
Fox E. P., Singh-Babak S. D., Hartooni N., Nobile C. J. Biofilms and antifungal resistance. Antifungals: From Genomics to Resistance and the Development of Novel Agents. 2015; 71–90. https://doi.org/10.21775/9781910190012.04
Müller F.-M. C., Seidler M., Beauvais A. Aspergillus fumigatus biofilms in the clinical setting. Medical Mycology. 2011;49(S1): S96–S100. https://doi.org/10.3109/13693786.2010.502190
Reichhardt C., Ferreira J. A. G., Joubert L.-M., Clemons K. V., Stevens D. A., Cegelski L. Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. ASM Journals. Eukaryotic Cell. 2015;14(11): 1064–1072. https://doi.org/10.1128/EC.00050-15
Donlan R. M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases. 2002;8(9): 881–890. https://doi.org/10.3201/eid0809.020063
Gorbushina A. A., Panina L. K. Adhesion of micromycete conidia to polymeric materials. Mycology and Phytopathology. 1992;26(5): 372–377. (In Russ.)
Kalinina I. G. , Gumargalieva K. Z. , Kuznetsova O. N., Zaikov G. E. Interrelation of adhesion of conidia of the microscopic fungus Trichoderma viride with the electrochemical properties of metals. Bulletin of the Kazan Technological University. 2012;15(12): 115–118. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=17846266
Joubert L.-M., Ferreira J. A., Stevens D. A., Nazik H., Cegelski L. Visualization of Aspergillus fumigatus biofilms with scanning electron microscopy and variable pressure-scanning electron microscopy: A comparison of processing techniques. Journal of Microbiological Methods. 2017;132: 46–55. https://doi.org/10.1016/j.mimet.2016.11.002
González-Ramírez A.I., Ramírez-Granillo A., Medina-Canales M. G., Rodríguez-Tovar A. V., Martínez-Rivera M. A. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiology. 2016;16, 243. https://doi.org/10.1186/s12866-016-0859-4
Villena G. K., Fujikawa T., Tsuyumu S., Gutiérrez-Correa M. Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy. Bioresource Technology. 2010;101(6): 1920–1926. https://doi.org/10.1016/j.biortech.2009.10.036
Denkhaus E., Meisen S., Telgheder U., Wingender J. Chemical and physical methods for characterisation of biofilms. Microchimica Acta. 2007;158(1-2): 1–27. https://doi.org/10.1007/s00604-006-0688-5
Beech I. B., Sunner J. A., Hiraoka K. Microbe–surface interactions in biofouling and biocorrosion processes. International Microbiology. 2005;8: 157–168.PMID: 16200494. https://doi.org/10.2436/IM. V8I3.9522
Beech I. B., Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology. 2004;15(3): 181–186. https://doi.org/10.1016/j.copbio.2004.05.001
Yang S. L., Chung K. R. The NADPH-oxidasemediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Molecular Plant Pathology. 2012;13(8): 900–914. https://doi.org/10.1111/j.1364-3703.2012.00799.x
Gessler N. N., Averyanov A. A., Belozerskaya T. A. Reactive oxygen species in the regulation of fungal development (Review). Biochemistry. 2007;72(10): 1091–1109. https://doi.org/10.1134/s0006297907100070
Gamaley I. L., Klyubin N. N. The role of hydrogen peroxide as a second messenger. Tsitologiya. 1996;38(12): 1242-1247. Available at: https://www.elibrary.ru/item.asp?id=14933936
Barsukova M. E., Veselova I. A., Shekhovtsova T. N. Main methods and approaches to the determination of markers of oxidative stress - organic peroxide compounds and hydrogen peroxide. Journal of Analytical Chemistry. 2019;74(5): 425-436. https://doi.org/10.1134/S1061934819020035
Hansberg W., Aguirre J. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. Journal of Theoretical Biology. 1990;142(2): 201–221. PMID: 2352433. https://doi.org/10.1016/s0022-5193(05)80222-x
Sideri M., Georgiou C. D. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron. Mycologia. 2000;92(6): 1033–1042. https://doi.org/10.2307/3761468
Tkachuk V. A. , Tyurin-Kuzmin P. A. , Belousov V. V., Vorotnikov A. V. Hydrogen peroxide as a new secondary Messenger. Biological Membranes. 2012;29(1–2): 21–37. (In Russ., abstract in Eng.). Available at: https://istina.msu.ru/media/publications/articles/300/3a4/1513469/BMM0021.pdf
Zúñiga-Silva J. R., Chan-Cupul W., Kuschk P., Loera O., Aguilar-López R., Rodríguez-Vázquez R. Effect of Cd+2 on phosphate solubilizing abilities and hydrogen peroxide production of soil-borne micromycetes isolated from Phragmites australisrhizosphere. Ecotoxicology. 2015;25(2): 367–379. https://doi.org/10.1007/s10646-015-1595-5
Zhang J., Miao Y., Rahimi M. J., Zhu H., Steindorff A., Schiessler S., Cai F., PangG., Chenthamara K., Xu Y., Kubicek C. P., Shen Q., Druzhinina I. S. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environmental Microbiology. 2019;21(8): 2644–2658 https://doi.org/10.1111/1462-2920.14575
Stosz S. K., Fravel D. R., Roberts D. P. In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Applied and Environmental Microbiology. 1996;62(9): 3183–3186. https://doi.org/10.1128/aem.62.9.3183-3186.1996
Murray F. R., Llewellyn D. J., Peacock W. J.,Dennis E. S. Isolation of the glucose oxidase gene from Talaromyces flavus and characterisation of its role in the biocontrol of Verticillium dahliae. Current Genetics. 1997;32(5): 367–375. https://doi.org/10.1007/s002940050290
Yang C.-A., Cheng C.-H., Lo C.-T., Liu S.-Y., Lee J.-W., Peng K.-C. A Novell-Amino Acid Oxidase from Trichoderma harzianum ETS 323 Associated with Antagonism of Rhizoctonia solani. Journal of Agricultural and Food Chemistry. 2011;59(9): 4519–4526. https://doi.org/10.1021/jf104603w
Smirnova I. P., Karimova E. V., Shneider Y. A. Antibacterial Activity of L-Lysine-a-Oxidase from the Trichoderma. Bulletin of Experimental Biology and Medicine. 2017;163(6): 777–779. https://doi.org/10.1007/s10517-017-3901-0
Heller J., Tudzynski P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annual Review of Phytopathology. 2011;49(1): 369–390. https://doi.org/10.1146/annurevphyto-072910-095355
Mentges M., Bormann J. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum. Scientific Reports. 2015;5(1), 14980: 1–10. https://doi.org/10.1038/srep14980
Eichlerová I., Homolka L., Lisá L., Nerud F. The influence of extracellular H2O2 production on decolorization ability in fungi. Journal of Basic Microbiology. 2006;46(6): 449–455. https://doi.org/10.1002/jobm.200610064
Zhao J., Janse B. J. H. Comparison of H2O2-producing enzymes in selected white rot fungi. FEMS Microbiology Letters. 1996;139(2-3): 215–221. https://doi.org/10.1111/j.1574-6968.1996.tb08205.x
Wiberth C.-C., Casandra A.-Z. C., Zhiliang F., Gabriela H. Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures. Annals of Microbiology. 2019;69: 171–181. https://doi.org/10.1007/s13213-018-1413-4
Zhao Y., Li J., Chen Y., Hang H. Response to oxidative stress of Coriolus versicolor induced by exogenous hydrogen peroxide and paraquat. Annals of Microbiology. 2009;59(2): 221–227. https://doi.org/10.1007/bf03178320
Hansel C. M., Zeiner C. A., Santelli C. M., Webb S. M. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexualreproduction. Proceedings of the National Academy of Sciences. 2012;109(31): 12621–12625. https://doi.org/10.1073/pnas.1203885109
Hayyan M., Hashim M. A., AlNashef I. M. Superoxide Ion: Generation and Chemical Implications. Chemical Reviews. 2016;116(5): 3029–3085. https://doi.org/10.1021/acs.chemrev.5b00407
Winterbourn C. C. Biological chemistry of superoxide radicals. ChemTexts (The Textbook Journal of Chemistry). 2020;6(1): 7. https://doi.org/10.1007/s40828-019-0101-8
Janik I., Tripathi G. N. R. The nature of the superoxide radical anion in water. The Journal of Chemical Physics. 2013;139(1): 014302-1–014302-7.https://doi.org/10.1063/1.4811697
Belov D. V., Chelnokova M. V., Kalinina A. A., Sokolova T. N., Smirnov V. F., Kartashov V. R. Active oxygen species in metal corrosion. Corrosion: Materials, Protection. 2011;3: 19–26. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=16317997
Belov D. V., Chelnokova M. V., Sokolova T. N., Smirnov V. F., Kalinina A. A., Kartashov V. R. Generation of superoxide radical anion by micromycetes and its role in metal corrosion. ChemChemTech. 2011;54(10):133–136. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=16547211
De Grey A. D. N. J. HO2 •: The Forgotten Radical. DNA and Cell Biology. 2002;21(4): 251–257. https://doi.org/10.1089/104454902753759672
Bielski B. H. J., Allen A. O. Mechanism of the disproportionation of superoxide radicals. Journal of Physical Chemistry. 1977;81(11): 1048–1050. https://doi.org/10.1021/j100526a005
Xu W., Yu F., Yang L., Zhang B., Hou B., Li Y. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin. Materials Science and Engineering: C. 2018;92:11–19. https://doi.org/10.1016/j.msec.2018.06.023
Yu F., Addison O., Davenport A. J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomaterialia. 2015;26: 355–365. https://doi.org/10.1016/j.actbio.2015.07.046
Miyazawa T., Terachi T., Uchida S., Satoh T., Tsukada T., Satoh Y., Wada Y., Hosokawa H. Effects of hydrogen peroxide on corrosion of stainless steel, (V) characterization of oxide film with multilateral surface analyses. Journal of Nuclear Science and Technology.2006;43(8): 884–895. https://doi.org/10.1080/18811248.2006.9711173
Dong C., Yuan C., Bai X., Li J., Qin H., Yan X. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments. Scientific Reports. 2017;7(1): 2327. https://doi.org/10.1038/s41598-017-02530-5
Singh A. , Chaudhar y V. , Sharma A. Electrochemical studies of stainless steel corrosion in peroxide solutions. Portugaliae Electrochimica Acta. 2012;30(2): 99–109. https://doi.org/10.4152/pea.201202099
Mabilleau G., Bourdon S., Joly-Guillou M. L., Filmon R., Baslé M. F., Chappard D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomaterialia. 2006;2(1): 121–129. https://doi.org/10.1016/j.actbio.2005.09.004
Furiya-Sato S., Fukushima A., Mayanagi G., Sasaki K., Takahashi N. Electrochemical evaluation of the hydrogen peroxide- and fluoride-induced corrosive property and its recovery on the titanium surface. Journal of Prosthodontic Research. 2020;64(3): 307–312. https://doi.org/10.1016/j.jpor.2019.09.002
Yu F., Addison O., Davenport A. J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomaterialia. 2015;26: 355–365. https://doi.org/10.1016/j.actbio.2015.07.046
Been J., Tromans D. Titanium corrosion in alkaline hydrogen peroxide. Corrosion. 2000;56(8): 809–818. https://doi.org/10.5006/1.3280584
Handbook of electrochemistry. A. M. Sukhotin (Ed.). Leningrad: Chemistry Publ.; 1981. 488 p. (In Russ.)
Antonchenko V. Ya., Davydov A. S., Ilyin V. V. Fundamentals of water physics. AN Ukrainian SSR. Institute of Theoretical Physics. Kyiv: Naukova dumka Publ.; 1991. 672 p. (In Russ.)
Handbook. Structure and corrosion of metals and alloys: Atlas. Moscow: Metallurgy Publ.; 1989. 400 p. 67. Moon S.-M., Pyun S.-I. The formation and dissolution of anodic oxide films on pure aluminum in alkaline solution. Electrochimica Acta. 1999;44: 2445–2454. https://doi.org/10.1016/S0013-4686(98)00368-5
Davis G. D., Moshier W. C., Long G. G., Black D. R. Passive film structure of supersaturated Al-Mo alloys. Journal of the Electrochemical Society. 1991; 138(11): 3194–3198. https://doi.org/10.1149/1.2085392
Nguyen L., Hashimoto T., Zakharov D. N., Stach E. A., Rooney A. P., Berkels B., Burnett T. L. Atomic-scale insights into the oxidation of aluminum. ACS Applied Materials & Interfaces. 2018;10(3): 2230–2235. https://doi.org/10.1021/acsami.7b17224
Hunter M. S., Fowle P. Natural and thermally formed oxide films on aluminum. Journal of the Electrochemical Society. 1956;103(9): 482–485. https://doi.org/10.1149/1.2430389
Gulbransen Earl A., Wysong W. S. Thin Oxide Films on Aluminum. Journal of Physical Chemistry. 1947;51(5): 1087–1103. https://doi.org/10.1021/j150455a004
Vargel C. Corrosion of aluminium. Hardbound: Elsevier; 2004. 700 p.73. Gromov A. A., Il’in A. P., Foerter-Barth ., Teipel U. D. Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combustion, Explosion and Shock Waves. 2006;42(2): 177–184. https://doi.org/10.1007/S10573-006-0036-4
Larichev M. N., Laricheva O. O., Leipunsky I. O., Pshechenkov P. A., Zhigach A. N., Kuskov M. L., Sedoy V. S. New “reactive” coatings for passivation surfaces of nanosized Al particles intended for energy use. Khimicheskaya fizika. 2006;25(10): 72–79. (In Russ.). Available at: https://w w w.elibrar y.ru/item.asp?id=9295873
Deng Z. Y., Ferreira J. M. F., Tanaka Y., Ye J. Physicochemical mechanism for the continuous reaction of g-Al2O3 modified Al powder with water. Journal of the American Ceramic Society. 2007;90(5): 1521–1526. https://doi.org/10.1111/j. 1551-2916.2007.01546.x
Fernandez A., Sanchez-Lopez J. C., Caballero A. Characterization of nanophase Al-oxide/Al powders by electron energy-loss spectroscopy. Journal of Microscopy. 1998;191: 212–220. https://doi.org/10.1046/j.1365-2818.1998.00355.x
Razavi-Tousi S. S., Szpunar J. A. Mechanism of corrosion of activated aluminum particles by hot water. Electrochimica Acta. 2014;127: 95–105. https://doi.org/10.1016/j.electacta.2014.02.024
Lozhkomoev A. S., Glazkova E. A., Bakina O. V., Lerner M. I., Gotman I., Gutmanas E. Y., Kazantsev S. O., Psakhie S. G. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water. Nanotechnology. 2016;27(20): 205603 (7 pp). https://doi.org/10.1088/0957-4484/27/20/205603
Kanehira S., Kanamori S., Nagashima K., Saeki T., Visbal H., Fukui T. Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions. Journal of Asian Ceramic Societies. 2013;1: 296–303. https://doi.org/10.1016/j.jascer.2013.08.001
Bunker B. C., Nelson G. C., Zavadil K. R., Barbour J. C., Wall F. D., Sullivan J. P., Windisch C. F., Engelhardt M. H., Baer D. R. Hydration of passive oxide films on aluminum. The Journal of Physical Chemistry B. 2002;18(106): 4705–4713. https://doi.org/10.1021/jp013246e
Fateev Yu. F., Vrzhosek G. G., Antropov L. I. On the corrosion of aluminum in alkali solutions. Bulletin of the Kiev Polytechnic Institute. Series: Сhemical Engineering and Technology. 1979;16: 60–63. (In Russ.). Available at: https://w w w.elibrar y.ru/item.asp?id=17937682
Grigor’eva I. O., Dresvyannikov A. F. Corrosion and electrochemical behavior of aluminum in solutions of potassium and lithium hydroxides. Bulletin of the Kazan Technological University. 2012;15(14): 199–202. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=17937682
Grigoryeva I. O., Dresvyannikov A. F., Masnik O. Yu., Zakirov R. A. Electrochemical behavior of aluminum in solutions of ammonium hydroxide and sodium hydroxide. Bulletin of the Kazan Technological University. 2011;6: 72–78. (In Russ., abstract in Eng.). Available at: https://w w w.elibrar y.ru/item.asp?id=16147047
Pyun S. I., Moon S. M. Corrosion mechanism of pure aluminium in aqueous alkaline solution. Journal of Solid State Electrochemistry. 2000;5(4): 267–272. https://doi.org/10.1007/s100080050203
Bryan J. M. Aluminium and aluminium alloys in the food industry with special reference to corrosion and its prevention. Department of Science and Industrial Research. Food Investigation Special Report. London: H. M. Stationery Office; 1948;50: p. 153.
Laptev A. B., Lutsenko A. N., Kurs M. G., Bukharev G. M. Experience studies of bio-corrosion of metals. Theory and Practice of Corrosion Protection. 2016;2(80): 36–57. (In Russ., absract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=29311937
Nardy K., Johannes A.V. The dual role of microbes in corrosion. The ISME Journal. 2015;9(3): 542–551. https://doi.org/10.1038/ismej.2014.169
Smirnov V. F., Belov D. V., Sokolova T. N., Kuzina O. V., Kartashov V. R. Microbiological corrosion of aluminum alloys. Applied Biochemistry and Microbiology. 2008;44: 192–196. https://doi.org/10.1134/S0003683808020117
Belov D. V., Belyaev S. N., Maksimov M. V., Gevorgyan G. A. Research of corrosion fracture of D16T and AMg6 aluminum alloys exposed to microscopic fungi. Voprosy Materialovedeniya. 2021;3(107): 163–183. https://doi.org/10.22349/1994-6716-2021-107-3-163-183
Belov D. V., Chelnokova M. V., Sokolova T. N., Smirnov V. F., Kartashov V. R. On the role of reactive oxygen species in the initiation of corrosion of metals by microscopic fungi. Korroziya: Materialy, Zashchita. 2009;11: 43–48. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=13032869
Koval E. Z., Sidorenko L. P. Microdestructors of industrial materials. Kyiv: Naukova Dumka Publ.; 1989.192 p. (In Russ.)
Sutton D. A, Fothergill A. W, Rinaldi M. G. Guide to clinically significant fungi. Baltimore: Williams & Wilkins; 1997. 471 p.
Berridge M. V., Herst P. M., Tan A. S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review. 2005;11: 127–152. https://doi.org/10.1016/s1387-2656(05)11004-7
Seidler E. The tetrazolium-fomazan system: design and histochemistry. Progress in Histochemistry and
ytochemistry. 1991;24(1): 1–79. https://doi.org/10.1016/s0079-6336(11)80060-4
Altman F. P. Tetrazolium salts and formazans. Progress in Histochemistry and Cytochemistry. 1976;9(3): 3–51. https://doi.org/10.1016/s0079-6336(76)80015-0
Rotilio G., Bray R. C., Fielden E. M. A pulse radiolysis study of superoxide dismutase. Biochimica et Biophysica Acta (BBA) - Enzymology. 1972;268(2): 605–609. https://doi.org/10.1016/0005-2744(72)90359-2
Fridovich I. Superoxide Radical and Superoxide Dismutases. Annual Review of Biochemistry. 1995;64(1): 97–112 . https://doi.org/10.1146/annurev.bi.64.070195.000525
Fielden E. M., Roberts P. B., Bray R. C., Lowe D. J., Mautner G. N., Rotilio G., Calabrese L. The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochemical Journal. 1974;139(1): 49–60. https://doi.org/10.1042/bj1390049
Kalinina A. A., Belov D. V., Chelnokova M. V., Sokolova T. N., Moskvichev A. N., Razov E. N., Kartashov V. R. Electron acceptor compounds in the study of biocorrosion phenomena. Korroziya: Materialy, Zashchita. 2011;12:29–32. (In Russ.). Available at: https://elibrary.ru/item.asp?id=17241858
Sirota T. V. A Chain reaction of adrenaline autoxidation is a model of quinoid oxidation of catecholamines. Biophysics. 2020;65(4): 548–556. https://doi.org/10.1134/S0006350920040223
Misra H. P., Fridovich I. The univalent reduction of oxygen by reduced flavins and quinones. Journal of Biological Chemistry. 1972;247(1): 188–192. https://doi.org/10.1016/s0021-9258(19)45773-6
Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry. 1972;247(10): 3170–3175. https://doi.org/10.1016/s0021-9258(19)45228-9
Bors W., Michel C., Saran M., Lengfelder E. Kinetic investigations of the autoxidation of adrenalin. Zeitschrift Für Naturforschung C. 1978;33(11-12): 891–896. https://doi.org/10.1515/znc-1978-11-1215
Burns J. M., Cooper W. J., Ferry J. L., King D. W., DiMento B. P., McNeill K., Miller C. J., Miller W. L., Peake B. M., Rusak S. A., Rose A. L. Waite T. D. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences. 2012;74(4): 683–734. https://doi.org/10.1007/s00027-012-0251-x
MacNevin W. M., Urone P. F. Separation of hydrogen peroxide from organic hydroperoxides. Analytical Chemistry. 1953;25(11): 1760–1761. https://doi.org/10.1021/ac60083a052
Pobiner H. Determination of hydroperoxides in hydrocarbon by conversion to hydrogen peroxide and measurement by titanium complexing. Analytical Chemistry. 1961;33(10): 1423–1426. https://doi.org/10.1021/ac60178a045
Bunker B. C., Nelson G. C., Zavadil K. R., Barbour J. C., Wall F. D., Sullivan J. P., Windisch C. F., Engelhardt M. H., Baer D. R. Hydration of passive oxide films on aluminum. Journal of Physical Chemistry B. 2002;106(18): 4705–4713. https://doi.org/10.1021/jp013246e
Belitskus D. Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. Journal of the Electrochemical Society. 1970;117: 1097–1099. https://doi.org/10.1149/1.2407730
Heusler K. E., Allgaier W. Die kinetik der auflosung von aluminium in alkalischen losungen. Werkstoffe und Korrosion. 1971; 22(4): 297–302. https://doi.org/10.1002/maco.19710220405
Ribeiro T., Motta A., Marcus P., Gaigeot M.-P., Lopez X., Costa D. Formation of the OOH radical at steps of the boehmite surface and its inhibition by gallic acid: A theoretical study including DFT-based dynamics. Journal of Inorganic Biochemistry. 2013;128: 164–173. https://doi.org/10.1016/j.jinorgbio.2013.07.024
Ren T., Yang S., Jiang Y., Sun X., Zhang Y. Enhancing surface corrosion of zero-valent aluminum (ZVAl) and electron transfer process for the degradation of trichloroethylene with the presence of persulfate. Chemical Engineering Journal. 2018;348: 350–360. https://doi.org/10.1016/j.cej.2018.04.216
Meredith C., Hamilton T. P., Schaefer H. F. Oxywater (water oxide): new evidence for the existence of a structural isomer of hydrogen peroxide. The Journal of Physical Chemistry. 1992;96(23): 9250–9254. https://doi.org/10.1021/j100202a034
Jursic B. S. Density functional theory and ab initio study of oxywater isomerization into hydrogen peroxide. Journal of Molecular Structure: THEOCHEM. 1997;417(1-2): 81–88. https://doi.org/10.1016/s0166-1280(97)00059-6
Franz J., Francisco J. S., Peyerimhoff S. D. Production of singlet oxygen atoms by photodissociation of oxywater. The Journal of Chemical Physics. 2009; 130 (8): 084304. https://doi.org/10.1063/1.3080808
Chumakov A. A. , Kotelnikov O. A. , Slizhov Yu. G., Minakova T. S. Substantiation of the generation of oxywater zwitterions and singlet oxygen atoms from hydrogen peroxide molecules in aqueous solutions. Bulletin of the South Ural State University. Series “Chemistry”. 2018;10(4): 44–59. (In Russ., abstract in Eng.). https://doi.org/10.14529/chem180405
Shaitura N. S., Laricheva O. O., Larichev M. N. Study of the mechanism of low-temperature oxidation of microsized aluminum powder with water. Chemical Physics. 2019;38(3): 9–23. (In Russ.). https://doi.org/10.1134/S0207401X19030087
Larichev M. N. Reaction of aluminum powders with liquid water and steam. In: (2014). Metal Nanopowders. Gromov A., Teipel U. (Eds.). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. W.; 2014. p. 163. https://doi.org/10.1002/9783527680696.ch8
Larichev M. N., Laricheva O. O., Leipunsky I. O., Pshechenkov P. A. The reaction of aluminum particles with liquid water and water vapor is a promising source of hydrogen for the needs of hydrogen energy. Proceedings of the Russian Academy of Sciences. Energy. 2007;5: 125–139. (In Russ.). Available at: https://elibrary.ru/item.asp?id=9584641
Zang J., Klasky M., Letellier B.C. The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear Materials. 2009;384(2): 175–189. https://doi.org/10.1016/j.jnucmat.2008.11.009
Deng Z.-Y., Ferreira J. M. F., Tanaka Y., Ye J. Physicochemical mechanism for the continuous reaction of g-Al2O3-modified aluminum powder with water. Journal of the American Ceramic Society. 2007; 90 (5): 1521–1526. https://doi.org/10.1111/j.1551-2916.2007.01546.x
Rosliza R., Izman S. SEM-EDS characterization of natural products on corrosion inhibition of Al-Mg- Si alloy. Protection of Metals and Physical Chemistry of Surfaces. 2011;47: 395–401. https://doi.org/10.1134/S2070205111030129
Song W., Du J., Xu Y., Long B. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes. Journal of Nuclear Materials. 1997; 246(2–3): 139–143. https://doi.org/10.1016/S0022-3115(97)00146-3
Ulanovskiy I. B. Hydrogen diffusion and porosity formation in aluminium. I. B. Ulanovskiy (Ed.). Moscow: Izdatelskiy Dom ‘MISIS’ Publ., 2015. p. 122.
Kaspzyk-Hordern B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Advances in Colloid and Interface Science. 2004;110(1–2): 19–48. https://doi.org/10.1016/j.cis.2004.02.002
Belov D. V., Sokolova T. N., Smirnov V. F., Kuzina O. V., Kostyukova L. V., Kartashov V. R. Corrosion of aluminum and its alloys under the effect of microscopic fungi. Protection of Metals and Physical Chemistry of Surfaces. 2008;44: 737–742. https://doi.org/10.1134/S0033173208070151
Belov D. V., Belyaev S. N., Maksimov M. V., Gevorgyan G. A. On mechanism of biocorrosion of aluminum alloys D16T and AMg6 (Review). Korroziya: Materialy, Zashchita. 2021;10: 1–10. (In Russ.). https://doi.org/10.31044/1813-7016-2021-0-10-1-22
Lee S., Shin J. H., Choi M. Y. Watching the growth of aluminum hydroxide nanoparticles from aluminum nanoparticles synthesized by pulsed laser ablation in aqueous surfactant solution. Journal of Nanoparticle Research. 2013;15: 1473–1480. https://doi.org/10.1007/s11051-013-1473-0
Wefers K., Misra C., Bridenbaugh P. Oxides and hydroxides of aluminum. Alcoa Laboratories. 1987. 92 p.
Ahmed M., Qi Y., Zhang L., Yang Y., Abas A., Liang J., Cao B. Influence of Cu2+ ions on the corrosion resistance of AZ31 magnesium alloy with microarc xidation. Materials. 2020;13(11): 2647. https://doi.org/10.3390/ma13112647
Sinyavsky V. S., Valkov V. D., Kalinin V. D. Corrosion and protection of aluminum alloys. Moscow: Metallurgiya Publ.; 1986. 386 p. (In Russ.)
Beaunier L. Corrosion of grain boundaries: initiation processes and testing. Journal of Physique Colloques. 1982;43(C6): 271–282. https://doi.org/10.1051/jphyscol:1982624
Krymsky S. V., Ilyasov R. R., Avtokratova E. V., Sitdikov O. Sh., Markushe M. V. Intergranular corrosion of cryorolled and aged aluminum alloy D16. Protection of Metals and Physical Chemistry of Surfaces. 2017;53:
–1099. https://doi.org/10.1134/S2070205117060144
Abramova M. G., Goncharov A. A. Intergranular corrosion of wrought aluminum alloys during fullscale and full-scale accelerated climatic tests. Proceedings of VIAM. 2019;11(83): 85–94. (In Russ.,abstract in Eng.). https://doi.org/10.18577/2307-6046-2019-0-11-85-94
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.