Preparation and characterization of Ge-Ni-Te nanocomposite

  • Iman A. Mahdy Al-Azhar University, Physics Department, Faculty of Science (Girls), Nasr City 11753, Cairo, Egypt https://orcid.org/0000-0002-8550-5539
  • Salah M. El Sheikh School of Sciences and Engineering, Physics Department, American University in Cairo, New Cairo 11835, Cairo, Egypt
  • Hosny A. Omar School of Sciences and Engineering, Physics Department, American University in Cairo, New Cairo 11835, Cairo, Egypt
  • Pavel V. Seredin Voronezh State University, Physics Faculty, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-6724-0063
  • Manal A. Mahdy National Research Centre, Solid State Physics Department, Dokki 12622, Giza, Egypt https://orcid.org/0000-0002-8210-2312
Keywords: Ni-Ge-Te, Nanocomposite, Structural and optical properties, Diamagnetic

Abstract

NixGe50–xTe50 with x = 2, 4, 6, 8, 10, 15 and 20 at% ternary nanocomposite prepared using multistage solid-state direct reaction. Nanocrystalline nature was studied by X-ray powder diffraction, results reviled that, the main phase is rhombohedral GeTe polymorph, and the second major phase is hexagonal Ni3GeTe2. The calculated average crystallite size of the whole constituents in prepared samples is within the range of 47.3-83.8 nm. Optical properties evaluated from diffuse reflection measurements and the calculated bandgap of all samples are nonmonotonically changes with Ni content from 1.45 to 1.62 eV with the direct allowed transition.

Downloads

Download data is not yet available.

Author Biographies

Iman A. Mahdy, Al-Azhar University, Physics Department, Faculty of Science (Girls), Nasr City 11753, Cairo, Egypt

Associate Professor, Physics
Department, Faculty of Science for Girls

Salah M. El Sheikh, School of Sciences and Engineering, Physics Department, American University in Cairo, New Cairo 11835, Cairo, Egypt

Professor, Physics Department

Hosny A. Omar, School of Sciences and Engineering, Physics Department, American University in Cairo, New Cairo 11835, Cairo, Egypt

Professor, Physics Department

Pavel V. Seredin, Voronezh State University, Physics Faculty, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Full
Professor, Chair of department, Department of Solid
State Physics and Nanostructures

Manal A. Mahdy, National Research Centre, Solid State Physics Department, Dokki 12622, Giza, Egypt

associate professor, Solid State
Physics Department

References

Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science. 1998;281(5379): 951–956. https://doi.org/10.1126/science.281.5379.951

Furdyna J. K. Diluted magnetic semiconductors. Journal of Applied Physics. 1988;64: R29–R64. https://doi.org/10.1063/1.341700

Fiederling R., Keim M., Reuscher G., Ossau W., Schmidt G., Waag A., Molenkamp L.W. Injection and detection of a spin-polarized current in a light-emitting diode. Nature. 1999;402(6763): 787–789. https://doi.org/10.1038/45502

Ohno Y., Young D. K., Beschoten B., Matsukura F., Ohno H., Awschalom D. D. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature. 1999;402: 790–792. https://doi.org/10.1038/45509

Koshihara S., Oiwa A., Hirasawa M., Katsumoto S., Iye Y., Urano C., Takagi H., Munekata H. Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In,Mn)As/GaSb. Physical Review Letters. 1997;78(24): 4617–4620. https://doi.org/10.1103/physrevlett.78.4617

Leong T. K., Ferromagnetism in narrow gap semiconductor. In: SYMPOSIUM D3&C2 - iumrs-icam. 2013: Department of Electrical and Computer Engineering, National University of Singapore. 2013.

Fukuma Y., Asada H., Miyashita J., Nishimura N., Koyanagi T., Magnetic properties of IV-VI compound GeTe based diluted magnetic semiconductors. Journal of Applied Physics. 2003;93(10): 7667–7669. https://doi.org/10.1063/1.1556113

Isaeva A. A., Baranov A. I., Doert Th., Ruck M., Kulbachinskii V. A., Lunin R. A., Popovkine B. A. New metal rich mixed chalcogenides with an intergrowth structure: Ni5.68SiSe2, Ni5.46GeSe2, and Ni5.42GeTe2. Russian Chemical Bulletin. 2007;56(9): 1694–1700. https://doi.org/10.1007/s11172-007-0263-1

Przybylin´Ska H., Springholz G., Lechner R. T., Hassan M., Wegscheider M., Jantsch W., Bauer G. Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge1-xMnxTe semiconductor. Physical Review Letters. 2014;112(4): 047202 1-5. https://doi.org/10.1103/PhysRevLett.112.047202

Gaj J. A., Kossut J. Basic Consequences of sp–d and d–d interactions in DMS. In: Gaj J., Kossut J. (eds). Introduction to the physics of diluted magnetic semiconductors. Springer series in materials science. Berlin, Heidelberg: Springer; 2010;114. https://doi.org/10.1007/978-3-642-15856-8_1

Cao L., Wu L., Zhu W., Ji X., Zheng Y., Song Z., Rao F., Song S., Ma Z., Xu L. High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications. Applied Physics Letters. 2015;107: 242101 https://doi.org/10.1063/1.4937603

Cao L. L., Wu L. C., Song Z. T., Zhu W. Q., Zheng Y. H., Cheng Y., Song S. N., Ma Z. Y., Xu L. Investigation of Ni doped Ge-Te materials for high temperature phase change memory applications. Materials Science Forum. 2016;848: 460–465. https://doi.org/10.4028/www.scientific.net/MSF.848.460

Edward A. Elements of X-ray diffraction. Physics Bulletin. 1978;29(12): 572.

https://doi.org/10.1088/0031-9112/29/12/034

Mahdy M. A., Mahdy I. A., El Zawawi I. K. Characterization of Pb24Te76 quantum dot thin film synthesized by inert gas condensation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;134: 302–309. https://doi.org/10.1016/j.saa.2014.06.055

Bahgat A. A., Heikal Sh., Mahdy I. A., Abd-Rabo A. S., Abdel Ghany A. Cyclic electrical conductivity in BaTiO3-PbTiO3-V2O5 glass-ceramic nanocomposite. Physica B: Condensed Matter. 2014;447: 23-29. https://doi.org/10.1016/j.physb.2014.04.048

Williamson G. K., Hall W. H. X-Ray line broadening from filed aluminum and wolfram. Acta Metallurgica. 1953;1(1): 22–31. https://doi.org/10.1016/0001-6160(53)90006-6

López R., Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology. 2012;61(1): 1–7. https://doi.org/10.1007/s10971-011-2582-9

Yeredla R. R., Xu H. An investigation of nanostructured rutile and anatase plates for improving the photosplitting of water. Nanotechnology. 2008;19(5): 055706. https://doi.org/10.1088/0957-4484/19/05/055706

Mahdy M. A., Kenawy S. H., Hamzawy E. M. A., El-Bassyouni G. T., El Zawawi I. K. Influence of silicon carbide on structural, optical and magnetic properties of Wollastonite/Fe2O3 nanocomposites. Ceramics International. 2021;47(9): 12047–12055. https://doi.org/10.1016/j.ceramint.2021.01.048

Chopra K. L., Bahl S. K. Amorphous versus crystalline films. III. Electrical properties and band structure. Journal of Applied Physics. 1970;41(5): 2196–2212. https://doi.org/10.1063/1.1659189

Fukumay Y., Asada H., Miyashita J., Nishimura N., Koyanagi T. Magnetic properties of IV-VI compound GeTe based diluted magnetic semiconductors. Journal of Applied Physics. 2003;93(10): 7667–7669. https://doi.org/10.1063/1.1556113

Deiseroth H-Jö., Aleksandrov K., Christof R., Lorenz K., Reinhard K. K. Fe3GeTe2 and Ni3GeTe2 – two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. European Journal of Inorganic Chemistry. 2006;2006(8): 1561–1567. https://doi.org/10.1002/ejic.200501020

Domashevskaya E. P., Mahdy I. A., Grechkina M. V. The new tetragonal phase of ternary compound CoGeTe with ferroelectric and magnetic responses. International. Journal of Advanced Information Science and Technology. 2016;5(4): 127–131. https://doi.org/10.15693/ijaist.2016.v5.i4.127-131

Published
2022-05-30
How to Cite
Mahdy, I. A., El Sheikh, S. M., Omar, H. A., Seredin, P. V., & Mahdy, M. A. (2022). Preparation and characterization of Ge-Ni-Te nanocomposite. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 24(2), 243-249. https://doi.org/10.17308/kcmf.2022.24/9264
Section
Original articles