Получение и исследования нанокомпозитов Ge-Ni-Te
Аннотация
В работе исследован тройной композит NixGe50–xTe50 при x = 2, 4, 6, 8, 10, 15 и 20 ат. %, полученный с использованием многостадийной твердофазной прямой реакции. Нанокристаллическая природа композита изучена методом порошковой рентгеновской дифракции, результаты которой показали, что основной фазой образца является ромбоэдрическая полиморфная модификация GeTe, а второй основной фазой является гексагональная Ni3GeTe2. Средний размер кристаллитов всех составляющих в синтезированных образцах находится в пределах 47.3–83.8 нм. Оптические свойства, оцененные по измерениям диффузного отражения, и расчетная ширина запрещенной зоны всех образцов немонотонно изменяются с содержанием Ni от 1.45 до 1.62 эВ при прямом разрешенном переходе.
Скачивания
Литература
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science. 1998;281(5379): 951–956. https://doi.org/10.1126/science.281.5379.951
Furdyna J. K. Diluted magnetic semiconductors. Journal of Applied Physics. 1988;64: R29–R64. https://doi.org/10.1063/1.341700
Fiederling R., Keim M., Reuscher G., Ossau W., Schmidt G., Waag A., Molenkamp L.W. Injection and detection of a spin-polarized current in a light-emitting diode. Nature. 1999;402(6763): 787–789. https://doi.org/10.1038/45502
Ohno Y., Young D. K., Beschoten B., Matsukura F., Ohno H., Awschalom D. D. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature. 1999;402: 790–792. https://doi.org/10.1038/45509
Koshihara S., Oiwa A., Hirasawa M., Katsumoto S., Iye Y., Urano C., Takagi H., Munekata H. Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In,Mn)As/GaSb. Physical Review Letters. 1997;78(24): 4617–4620. https://doi.org/10.1103/physrevlett.78.4617
Leong T. K., Ferromagnetism in narrow gap semiconductor. In: SYMPOSIUM D3&C2 - iumrs-icam. 2013: Department of Electrical and Computer Engineering, National University of Singapore. 2013.
Fukuma Y., Asada H., Miyashita J., Nishimura N., Koyanagi T., Magnetic properties of IV-VI compound GeTe based diluted magnetic semiconductors. Journal of Applied Physics. 2003;93(10): 7667–7669. https://doi.org/10.1063/1.1556113
Isaeva A. A., Baranov A. I., Doert Th., Ruck M., Kulbachinskii V. A., Lunin R. A., Popovkine B. A. New metal rich mixed chalcogenides with an intergrowth structure: Ni5.68SiSe2, Ni5.46GeSe2, and Ni5.42GeTe2. Russian Chemical Bulletin. 2007;56(9): 1694–1700. https://doi.org/10.1007/s11172-007-0263-1
Przybylin´Ska H., Springholz G., Lechner R. T., Hassan M., Wegscheider M., Jantsch W., Bauer G. Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge1-xMnxTe semiconductor. Physical Review Letters. 2014;112(4): 047202 1-5. https://doi.org/10.1103/PhysRevLett.112.047202
Gaj J. A., Kossut J. Basic Consequences of sp–d and d–d interactions in DMS. In: Gaj J., Kossut J. (eds). Introduction to the physics of diluted magnetic semiconductors. Springer series in materials science. Berlin, Heidelberg: Springer; 2010;114. https://doi.org/10.1007/978-3-642-15856-8_1
Cao L., Wu L., Zhu W., Ji X., Zheng Y., Song Z., Rao F., Song S., Ma Z., Xu L. High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications. Applied Physics Letters. 2015;107: 242101 https://doi.org/10.1063/1.4937603
Cao L. L., Wu L. C., Song Z. T., Zhu W. Q., Zheng Y. H., Cheng Y., Song S. N., Ma Z. Y., Xu L. Investigation of Ni doped Ge-Te materials for high temperature phase change memory applications. Materials Science Forum. 2016;848: 460–465. https://doi.org/10.4028/www.scientific.net/MSF.848.460
Edward A. Elements of X-ray diffraction. Physics Bulletin. 1978;29(12): 572.
https://doi.org/10.1088/0031-9112/29/12/034
Mahdy M. A., Mahdy I. A., El Zawawi I. K. Characterization of Pb24Te76 quantum dot thin film synthesized by inert gas condensation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;134: 302–309. https://doi.org/10.1016/j.saa.2014.06.055
Bahgat A. A., Heikal Sh., Mahdy I. A., Abd-Rabo A. S., Abdel Ghany A. Cyclic electrical conductivity in BaTiO3-PbTiO3-V2O5 glass-ceramic nanocomposite. Physica B: Condensed Matter. 2014;447: 23-29. https://doi.org/10.1016/j.physb.2014.04.048
Williamson G. K., Hall W. H. X-Ray line broadening from filed aluminum and wolfram. Acta Metallurgica. 1953;1(1): 22–31. https://doi.org/10.1016/0001-6160(53)90006-6
López R., Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology. 2012;61(1): 1–7. https://doi.org/10.1007/s10971-011-2582-9
Yeredla R. R., Xu H. An investigation of nanostructured rutile and anatase plates for improving the photosplitting of water. Nanotechnology. 2008;19(5): 055706. https://doi.org/10.1088/0957-4484/19/05/055706
Mahdy M. A., Kenawy S. H., Hamzawy E. M. A., El-Bassyouni G. T., El Zawawi I. K. Influence of silicon carbide on structural, optical and magnetic properties of Wollastonite/Fe2O3 nanocomposites. Ceramics International. 2021;47(9): 12047–12055. https://doi.org/10.1016/j.ceramint.2021.01.048
Chopra K. L., Bahl S. K. Amorphous versus crystalline films. III. Electrical properties and band structure. Journal of Applied Physics. 1970;41(5): 2196–2212. https://doi.org/10.1063/1.1659189
Fukumay Y., Asada H., Miyashita J., Nishimura N., Koyanagi T. Magnetic properties of IV-VI compound GeTe based diluted magnetic semiconductors. Journal of Applied Physics. 2003;93(10): 7667–7669. https://doi.org/10.1063/1.1556113
Deiseroth H-Jö., Aleksandrov K., Christof R., Lorenz K., Reinhard K. K. Fe3GeTe2 and Ni3GeTe2 – two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. European Journal of Inorganic Chemistry. 2006;2006(8): 1561–1567. https://doi.org/10.1002/ejic.200501020
Domashevskaya E. P., Mahdy I. A., Grechkina M. V. The new tetragonal phase of ternary compound CoGeTe with ferroelectric and magnetic responses. International. Journal of Advanced Information Science and Technology. 2016;5(4): 127–131. https://doi.org/10.15693/ijaist.2016.v5.i4.127-131
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.