Migration of an incommensurate intercrystalline boundary and boundary self-diffusion
Abstract
Most grain boundaries found in polycrystalline metals are not special. The angle of their mutual disorientation is an arbitrary value, and the axis of rotation is arbitrarily oriented to the plane of the boundary. Periodic atomic structures such as lattices of coincident nodes, alternating polyhedra, and others do not arise within such boundaries. They are called boundaries of a general type, non-special, arbitrary, or incommensurate. The general theory of relaxation processes at such boundaries has not yet been sufficiently developed. The aim of the study was the development of the model of migration of an incommensurate intercrystalline boundary at the atomic level and the description of the process of self-diffusion along it.
A circle called the main region is described around each boundary lattice node of one of the crystallites. If there is an atom in the node, then an atom of another crystallite is excluded from entering it. In the case of a vacant node in the main region, such an atom can be located. An atom in a planar picture means an atomic series in the three-dimensional case. The distribution of vacant nodes of the growing crystallite is uniform over the flat reduced main region. The migration mechanism involves the implementation of the following main processes: local rearrangement of atomic configurations and selfdiffusion of atoms in the transverse direction of the slope axis.
The characteristic times of these processes and the expression for the migration rate were found. The migrating boundary contains a large number of delocalised vacancies. This leads to the high diffusion mobility of atoms. Most vacancies in the boundary are not of thermal origin, but are determined only by the geometric atomic structure of the boundary. In this case, the expression for the boundary self-diffusion coefficient does not contain a multiplier depending on the activationenergy of vacancy formation. This leads to the fact that the coefficient of self-diffusion along the migrating boundary is significantly higher than in the stationary boundary. The model of an incommensurate boundary allows us to describe its migration and calculate the self-diffusion coefficient.
Downloads
References
Darinskii B. M., Saiko D. S., Fedorov Yu. A. Sliding along the boundary forming an incommensurable structure*. Izvestiya vysshikh uchebnykh zavedenii. Fizika = Russian Physics Journal. 1987;30(9): 53–57. https://www.elibrary.ru/item.asp?id=36961888 (In Russ.)
Żydek A., Wermiński M. and Trybula M. Description of grain boundary structure and topology in nanocrystalline aluminum using Voronoi analysis and order parameter. Computational Materials Science. 2021;197: 110660. https://doi.org/10.1016/j.commatsci.2021.110660
Darinskii B. M., Kul’kov V. G. Intercrystalline sliding along the boundaries formed by densely packed planes*. Poverkhnost’. Fizika, khimiya, mekhanika = Physics, Chemistry and Mechanics of Surfaces. 1993;75(5): 153–156. https://www.elibrary.ru/item.asp?id=36705071 (In Russ.)
Shtremel M. A., Markovich A. L. Energy of incommensurate grain boundaries. The Physics of Metals and Metallography . 1991;71(6): 21–29. https://www.elibrary.ru/item.asp?id=31078891
Darinskii B. M., Kalinin Yu. E., Mushtenko S. V., Saiko D. S. Structure of grain boundaries of a general type and mechanism of grain boundary internal friction peak. Solid State Phenomena. 2003;89: 203–232. https://doi.org/10.4028/www.scientific.net/SSP.89.203
Darinskii B. M., Kalinin Y. E., Sajko D. S. Atomic structure of the intercrystalline general type boundaries. Mechanisms of the grain boundary peak of internal friction. Premelting. Solid State Phenomena. 2006;115: 73–86. https://doi.org/10.4028/www.scientific.net/SSP.115.73
Gautam A., Radetic T., Lancon F., Dahmen U. Quantitative study of an incommensurate grain boundary using aberration corrected microscopy. Microscopy and Microanalysis. 2011;17(S2): 1338–1339. https://doi.org/10.1017/S1431927611007562
Gautam A., Ophus C., Lancon F., Radmilovic V., Dahmen U. Atomic structure characterization of an incommensurate grain boundary. Acta Materialia. 2013;61(13): 5078–5086. https://doi.org/10.1016/j.actamat.2013.04.028
Deymier P. A., Shamsuzzoha M., Weinberg J. D. Experimental evidence for a structural unit model of quasiperiodic grain boundaries in aluminum. Journal of Materials Research. 1991;6(7): 1461–1468. DOI: https://doi.org/10.1557/JMR.1991.1461
Lancon F., Ye J., Caliste D., Radetic T., Minor A. M., Dahmen U. Superglide at an internal incommensurate boundary. Nano Letters. 2010;10(2): 695–700. https://doi.org/10.1021/nl903885p
Wang Sh., Yu Yue, Zhang Sh., Zhang Sh., Xu H., Zou X., Zhang J., Atomic-scale studies of overlapping grain boundaries between parallel and quasi-parallel grains in low-symmetry monolayer ReS2. Matter. 2020;3(6): 2108–2123. https://doi.org/10.1016/j.matt.2020.09.015
Rouviere J., Lancon F., Rousseau K., Caliste D., Jouneau P., Fourne F. Structure of an incommensurate 90° Si grain boundary resolved with the help of a Cscorrector for illumination. Journal of Physics: Conference Series. 2010;209: 012041. https://doi.org/10.1088/1742-6596/209/1/012041
Sutton A. P. An analytic model for grainboundary expansions and cleavage energies. Philosophical Magazine A. 1991;63(4): 793–818. https://doi.org/10.1080/01418619108213914
Farkas D., Froseth A., Swygenhoven H. Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scripta Materialia. 2006;55(8): 695–698. https://doi.org/10.1016/j.scriptamat.2006.06.032
Wang L., Qi J., Zhang S., Ding M., Wei W., Wang J., Zhang Zh., Qiao R, Zhang Zh., Li Z., Liu K., Fu Yu., Hong H., Liu C., Wu M., Wang W., He Yu., Cu Yi., Li Q., Bai X., Liu K. Abnormal anti-oxidation behavior of hexagonal boron nitride grown on copper. Nano Research. 2022. https://doi.org/10.1007/s12274-022-4388-1
Chandross M., Argibay N. Friction of metals: A review of microstructural evolution and nanoscale phenomena in shearing contacts. Tribology Letters. 2021;69:119. https://doi.org/10.1007/s11249-021-01477-z
Kul’kov V. G., Polyakov A. S. Migration of an incommensurate high_angle grain boundary. Russian Metallurgy (Metally). 2012;(4): 263–268. https://doi.org/10.1134/S0036029512040064
Gupta B. K., Madhuri M. K., Gupta S. P. Diffusion induced grain boundary migration in the Cu–Cd system. Acta Materialia. 2003;51(17): 4991–5000. https://doi.org/10.1016/S1359-6454(03)00325-2
Viswanathan R., Bauer C. L. Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes. Acta Metallurgica. 1973;21(8): 1099–1109. https://doi.org/10.1016/0001-6160(73)90026-6
Hirth J., Lothe J. Theory of Dislocations. John Wiley and Sons; 1982. 857 p.
Li X., Liu W., Xu Y., Liu C. S., Fang Q. F., Pan B. C., Wang Zh. Energetic and kinetic behaviors of small vacancy clusters near a symmetric S5(310)/[001] tilt grain boundary in bcc Fe. Journal of Nuclear Materials. 2013;440(1–3): 250–256. https://doi.org/10.1016/j.jnucmat.2013.05.021
Smidoda K., Gottschalk W., Gleiter H. Diffusion in migrating interfaces. Acta Metallurgica. 1978;26(12): 1833-1836. https://doi.org/10.1016/0001-6160(78)90095-0
Krasil’nikov, V. V., Savotchenko, S. E. Grain boundary diffusion patterns under nonequilibrium and migration of grain boundaries in nanoctructure materials. Bulletin of the Russian Academy of Sciences: Physics. 2009;73(9): 1277–1283. https://doi.org/10.3103/S1062873809090214
Gorelik S. S, Dobatkin S. V., Kaputkina L. M. Recrystallization of metals and alloys*. M.: MISIS Publ.; 2005, 432 p. (In Russ.)
Prokoshkina D., Klinger L., Moros A., Wilde G., Rabkin E., Divinski S.V. Effect of recrystallization on diffusion in ultrafine-grained Ni. Acta Materialia. 2014;69: 314–325. https://doi.org/10.1016/j.actamat.2014.02.002
Chuvil’deev V. N., Nokhrin A. V., Pirozhnikova O. E., Gryaznov M. Y., Lopatin Y. G., Kopylov V. I., Myshlyaev M. M. Changes in the diffusion properties of nonequilibri umgrainbo und ariesupon recrystallization and superplastic deformation of submicrocrystalline metals and alloys. Physics of the Solid State. 2017;59(8): 1584–1593. https://doi.org/10.1134/S1063783417080066
Chuvil’deev V. N. Nonequilibrium grain boundaries in metals. Theory and applications*. M.: Fizmatlit Publ., 2004. 304 p. (In Russ.)
Kim H. K. Activation energies for the grain growth of an AZ31 Mg alloy after equal channel angular pressing. Journal of Materials Science. 2004;39(23): 7107–7109. https://doi.org/10.1023/B:JMSC.0000047560. 93940.45
Physical Metallurgy. Edited by R. W. Cahn, P. Haasen, North-Holland Physics Publishing, 1983, 1973 p.
McCaig A., Covey-Crump S. J., Ben Ismaïl W., Lloyd. G. Fast diffusion along mobile grain boundaries in calcite. Contributions to Mineralogy and Petrology. 2007;153: 159–175. https://doi.org/10.1007/s00410-006-0138-8
Tucker G. J., McDowell D. L. Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations. International Journal of Plasticity. 2011;27(6): 841–857. https://doi.org/10.1016/j.ijplas.2010.09.011
Nazarov A. A., Murzaev R. T. Nonequilibrium grain boundaries and their relaxation under oscillating stresses in columnar nickel nanocrystals studied by molecular dynamics. Computational Materials Science. 2018;151: 204–213. https://doi.org/10.1016/j.commatsci.2018.05.015
Wang Yu., Fu R., Jing L., Sang D., Li Yi. Tensile behaviors of pure copper with different fraction of nonequilibrium grain boundaries. Materials Science and Engineering: A. 2018;724: 164–170. https://doi.org/10.1016/j.msea.2018.03.086
Chuvil’deev V. N., Kopylov V. I., Zeiger W. A theory of non-equilibrium grain boundaries and its applications to nano- and micro-crystalline materials processed by ECAP. Annales de Chimie Science des Materiaux. 2002;27(3): 55–64. https://doi.org/10.1016/S0151-9107(02)80007-1
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.