A study of the local atomic structure the environment of zinc ions of different concentrations during their interaction with the arachidic acid Langmuir monolayer
Abstract
Vital cellular processes depend on the controlled transport of metal ions across biological membranes. A biological membrane is a complex system consisting of lipids and proteins, that is why simplified systems, in particular monomolecular layers, are used to model it.
This work presents the results of a study of the interaction of zinc ions from the aqueous subphase with the Langmuir monolayer of arachidic acid. The study was carried out for the first time and used total external reflection X-ray absorption spectroscopy. It considers the influence of the concentration of a ZnCl2 aqueous subphase solution on the local environment of zinc ions when interacting with the lipid monolayer immediately after its formation.
The theoretical analysis of experimental XANES spectra showed that one of the interaction ways of arachidic acid molecules with zinc ions immediately after the monolayer formation is an intramolecular interaction with the formation of spodium bonds between the zinc cation and the OH carboxyl group of arachidic acid
Downloads
References
Watson H. Biological membranes. Essays in Biochemistry. 2015;59: 43–69. https://doi.org/10.1042/bse0590043
Mukhomedzyanova S., Pivovarov Y., Bogdanova O., Dmitrieva L., Shulunov A. The lipids of biological membranes (Literature review). Acta Biomedica Scientifica. 2017;2(5(1)): 43–49. https://doi.org/10.12737/article_59e8bcd3d6fcb1.49315019
Wiśniewska-Becker A., Gruszecki W. I. 2 – Biomembrane models. In: Drug – biomembrane interaction studies. Woodhead Publishing. 2013: 47–59. https://doi.org/10.1533/9781908818348.47
Sandstead H. H. Handbook on the Toxicology of Metals, 4th ed. Elsevier. 2014: 1369–1386.
Pipan-Tkalec Z., Drobne D., Jemec A., Romih T., Zidar P., Bele M. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology. 2010;269(2-3): 198–203. https://doi.org/10.1016/j.tox.2009.08.004
Li S., Du L., Wei Z., Wang W. Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ions. Science of the Total Environment. 2017;580: 1155–1161. https://doi.org/10.1016/j.scitotenv. 2016.12.072
Bokhoven J. A., Lamberti C. (eds.). X-Ray absorption and X-Ray emission spectroscopy: Theory and Applications. John Wiley & Sons. 2016. https://doi.org/10.1002/9781118844243
Shmatko V. A., Mysoedova T. N., Mikhailova T. A., Yalovega G. E. Features of the electronic structure and chemical bonds of polyaniline-based composites obtained by acid-free synthesis. Condensed Matter and Interphases. 2019;4(4): 567–578. https://doi.org/10.17308/kcmf.2019.21/2367
Konovalov O. V., Novikova N. N., Kovalchuk M. V., … Yakunin S. N. XANES measurements for studies of adsorbed protein layers at liquid interfaces. Materials. 2020;13(20): 4635. https://doi.org/10.3390/ma13204635
Novikova N. N., Yakunin S. N., Koval’chuk M. V., … Topunov A. F. Possibilities of X-ray absorption spectroscopy in the total external reflection geometry for studying protein films on liquids. Crystallography Reports. 2019;64(6): 952–957. https://doi.org/10.1134/S1063774519060130
Joly Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Physical Review. 2001;63: 125120. https://doi.org/10.1103/physrevb.63.125120
Sujak A., Gagos M., Serra M. D., Gruszecki W. I. Organization of two-component monomolecular layers formed with dipalmitoylphosphatidylcholine and the carotenoid pigment, canthaxanthin. Molecular Membrane Biology. 2007;24(5-6): 431–41. https://doi.org/10.1080/09687860701243899
Hereć M., Gagoś M., Kulma M., Kwiatkowska K., Sobota A., Gruszecki W. I. Secondary structure and orientation of the pore-forming toxin lysenin in a sphingomyelin-containing membrane. Biochim Biophys Acta. 2008;1778(4): 872-9. https://doi.org/10.1016/j.bbamem.2007.12.004
Alloteau F., Valbi V., Majérus O., Biron I., Lehuede P., Caurant D., Seyeux A. Study of a surface treatment based on zinc salts to protect glasses from atmospheric alteration: Mechanisms and application to ancient glass objects in museum. In: Glass Atmospheric Alteration: Cultural Heritage, Industrial and Nuclear Glasses. Paris (France): Hermann edition, 2019. pp. 192–202.
Silber H. B., Simon D., Gaizer F. Octahedral-tetrahedral geometry changes for zinc(II) in the presence of chloride ions. Inorganic Chemistry. 1984;23(18): 2844–2848. https://doi.org/10.1021/ic00186a026
Parchment O. G., Vincent M. A., Hillier I. H. Speciation in aqueous zinc chloride. An ab initio hybrid microsolvation/continuum approach. The Journal of Physical Chemistry A. 1996;100(23): 9689–9693. https://doi.org/10.1021/jp960123z
Karmakar M., Frontera A., Chattopadhyay S., Mooibroek T., Bauzá A. Intramolecular spodium bonds in Zn(II) complexes: insights from theory and experiment. International Journal of Molecular Sciences. 2020;21(19): 7091. https://doi.org/10.3390/ijms21197091
Kremennaya M. A., Lysenko V. Y., Novikova N. N., Yakunin S. N., Rogachev A. V., Yalovega G. E. X-ray spectral diagnostics of the local environment of zinc in the arachidic acid layers. Journal of Physics: Conference Series. 2021;2103: 012171. https://doi.org/10.1088/1742-6596/2103/1/012171
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.