The synergy of transformation of isomorphous phyllosilicate structures
Abstract
The article presents an analysis of the synergy of structural transformations of phyllosilicates subjected to high temperatures and microwave radiation in terms of the destruction and formation of crystal structures. Studying the synergy of transformations of crystal structures is essential for the development of new materials and technologies, because it helps to create materials with unique properties, which cannot be obtained when using the same factors separately.
The material used in the study was a polymineral complex, which contained quartz, montmorillonite, kaolinite, chlorite, paragonite, and iron oxides (listed from the largest to the smallest mass fraction). The methods used in the study allowed us to assess the structural transformations. Averaged structural formulas of the studied phyllosilicates were calculated using the oxygen method combined with a recalculation method based on the results of a microprobe analysis. Differential thermal analysis demonstrated a synergistic effect of high temperature and microwave fields registered as a decrease in
the temperature gradient of the ceramics and initiation of the sintering process at lower temperatures and with greater intensity. All the treated samples contained the amorphous phase in significant concentrations: from 15 to 25 vol. %. Half of the three-layer phyllosilicates (chlorite and montmorillonite) were destroyed by the microwave field. Kaolinite and paragonite practically did not react to external factors. The synergistic effect was the most obvious in the structural transformations of silicon and iron oxides.
Our experiments demonstrated for the first time the mechanism of formation of magnetite and hematite crystals from X-ray amorphous iron-containing films covering the particles of clay minerals. The use of the MW field and the resulting dehydration led to the formation of crystals of nuclei of iron oxides. The following high-temperature processes activated an increase in aggregated iron (magnetite and hematite). The X-ray diffraction analysis determined the presence of a synergistic effect in the evolution of structures, which could not be identified by means of IR-spectroscopy. The EPR spectroscopy allowed us to register the states of rare irregular cells with foreign paramagnetic atoms. The shift of the foreign Fe3+ from the geometric centers of octahedral crystal cells towards the minima of potential energy caused by the Jahn-Teller effect decreased the potential energy of the crystal lattice. At the same time, some chemical bonds forming the crystal cell
became stronger, while others weakened
Downloads
References
Kolomenskiy E. N., Korolev V. A. Information entropy analysis of the structure formation in clay soils*. Inzhenernaya geologiya [Engineering Geology]. 1982;(5): 34–45. (in Russ.)
Belachew N., Bekele G. Synergy of magnetite intercalated bentonite for enhanced adsorption of congo red dye. Silicon. 2020;12(3): 603–612. https://doi. org/10.1007/s12633-019-00152-2
Zdorenko N. M., Alyabyeva T. M., Kormosh T. M. About synergism effect of complex additive of kaolin and clay suspension. Refractories and Industrial Ceramics. 2012;(4-5): 64–66. (in Russ., abstract in Eng.). Available at: https://elibrary.ru/pbcinp
Tsotetsi T. A., Mochane M. J., Motaung T. E., ... Linganiso Z. L. Synergistic effect of EG and cloisite 15A on the thermomechanical properties and thermal conductivity of EVA/PCL blend. Materials Research. 2017;20(1): 109–118. https://doi. org/10.1590/1980-5373-MR-2016-0277
Isitman N. A., Gunduz H. O., Kaynak C. Nanoclay synergy in flame retarded/glass fibre reinforced polyamide 6. Polymer Degradation and Stability. 2009;94(12): 2241–2250. https://doi.org/10.1016/j.polymdegradstab.2009.08.010
Ayres C., Lawler D. F., Kirisits M. J., Saleh N. B. Synergy between microwave radiation and silver ions or nanoparticles for inactivating Legionella pneumophila. Environmental Science and Technology Letters. 2021;8(7): 581–588. https://doi. org/10.1021/acs.estlett.1c00371
Chetverikova A. G., Filyak M. M., Kanygina O. N. Influence of high-frequency microwave radiation on montmorillonite structure parameters. Ceramica. 2019;65(376): 635–640. https://doi.org/10.1590/0366-69132019653762767
Yang J. N., Li Z. Y., Xu Y. X., Nie S. B., Liu Y. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research. 2020;27(9): 274. https://doi.org/10.1007/s10965-020-02250-x
Barry K., Lecomte-Nana G. L., Seynou M., ... Peyratout C. Comparative properties of porous phyllosilicate-based ceramics shaped by freeze-tape casting. Ceramics. 2022;5(1): 75–96. https://doi.org/10.3390/ceramics5010007
Prokhina A. V., Shapovalov N. A., Latypova M. M. Modification of the surface of clay minerals with high concentrations of montmorillonite in a highfrequency electromagnetic field*. Sovremennye naukoemkie tekhnologii [Modern high technology].2011;(1): 135–136. (in Russ.). Available at: https://elibrary.ru/nbfqnl
Khodosova N. A., Belchinskaya L. I., Novikova L. A. Effect of different mechanisms of heating of layered aluminosilicate on sorption processes Communication 1. Effect of preliminary thermal and electromagnetic (microwave) heat ing of montmorillonite on sorption of water. Sorbtsionnye i Khromatograficheskie Protsessy. 2017;17(5): 781–791. (in Russ.). https://doi.org/10.17308/sorpchrom.2017.17/439
Anisina I.N., Chetverikova A.G., Kanygina O.N. Effect of the batch mixture composition on the kinetics of sintering of montmorillonite containing clays*. Inorganic Materials: Applied Research. 2012;(12): 48–52. (in Russ.). Available at: https://elibrary.ru/item.asp?id=19096983
Anisina I.N., Chetverikova A.G., Kanygina O.N. Activation aspects of siliceous ceramics synthesis from montmorillonite containing clay*. Vestnik of the Orenburg State University. 2012;(4(140)): 170–174. (in Russ.). Available at: https://elibrary.ru/item.asp?id=17921809
Kanygina O. N., Filyak M. M., Chetverikova A. G. Microwave-induced phase transformations of natural clay in air and humid media. Inorganic Materials. 2018;54(9): 904–909. https://doi.org/10.1134/s0020168518090042
Borneman-Starynkevich I. D. Calculating mineral formulas. Moscow, Nauka Publ.; 1964. 218 p. (In Russ.)
Bulakh A. G., Zolotarev A. A., Krivovichev V. G. Structure. Isomorphism, formulas, and classification of minerals. Saint-Petersburg: St. Petersburg State University Publ., 2014. 132 p. (In Russ.)
Sokolov V. N., Chernov M. S., Shlykov V. G., ... Krupskaya V. V. Mineral nanoparticles in dispersive soils*. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2008;(9): 88–92. (In Russ.). Available at: https://elibrary.ru/item.asp?id=11155131
Beaufort D., Rigault C., Billon S., ... Patrier P. Chlorite and chloritization processes through mixedlayer mineral series in low-temperature geological systems – a review. Clay Minerals. 2015;50(4): 497–523. https://doi.org/10.1180/claymin.2015.050.4.06
Drits V. A., Kossovskaya A. G. Clay minerals: smectites and mixed-layer formations. Moscow, Nauka Publ.; 1990. 214 p. (In Russ.)
Makarov V. N. An energy-based approach to the description of structural transformations in iron oxides and aluminosilicates comprising natural clay minerals*. Cand. Phys.-Math. Sci. diss. of: 1.3.8. Tver: 2022. (in Russ.). Available at: https://www.dissercat.com/content/opisanie-strukturnykh-prevrashchenii-voksidakh-zheleza-i-alyumosilikatakh-sostavlyayushchik
Vanetsev A. S., Tretyakov Y. D. Microwaveassisted synthesis of individual and multicomponent oxides. Russian Chemical Reviews. 2007;76(5): 397–413. https://doi.org/10.1070/rc2007v076n05abeh003650
Escalera E., Antti M. L., Odén M. Thermal treatment and phase formation in kaolinite and illite based clays from tropical regions of Bolivia. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2012;31(1): 012028. https://doi.org/10.1088/1757-899x/31/1/012017
Makarov V. N., Kanygina O. N. Model of destruction of montmorillonite crystal structure in a microwave field. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(2): 153-160. https://doi.org/10.17586/2220-8054-2020-11-2-153-160
Jovanovski G., Makreski P. Minerals from macedonia. XXX. Complementary use of vibrational spectroscopy and x-ray powder diffraction for spectrastructural study of some cyclo-, phyllo- and tectosilicate minerals. A review. Macedonian Journal of Chemistry and Chemical Engineering. 2016;35(2): 125–155. https://doi.org/10.20450/mjcce.2016.1047
Tironi A., Trezza M. A., Irassar E. F., Scian A. N. Thermal treatment of kaolin: effect on the pozzolanic activity. Procedia Materials Science. 2012;(1): 343–350. https://doi.org/10.1016/j.mspro.2012.06.046
Khang V. C., Korovkin M. V., Ananyeva L. G. Identification of clay minerals in reservoir rocks by FTIR spectroscopy. OP Conference Series: Earth and Environmental Science. 2016;43(1): 012004. https://doi.org/10.1088/1755-1315/43/1/012004
Fricke H. H., Mattenklott M., Parlar H., Hartwig A. Method for the determination of quartz and cristobalite [Air Monitoring Methods, 2015]. The MAK-Collection for Occupational Health and Safety. 2002; 1(1):401–436. https://doi.org/10.1002/3527600418.am0sio2fste2015
Tyagi B., Chudasama C. D., Jasra R. V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2006;64(2): 273–278. https://doi.org/10.1016/j.saa.2005.07.018
Kloprogge J. T., Frost R. L. Infrared emission spectroscopic study of some natural and synthetic paragonites. Applied Spectroscopy. 1999;53(9): 1071–1077. https://doi.org/10.1366/0003702991948071
Chetverikova A. G., Kanygina O. N., Filiak M. M., Ogerchuk S. A. Structural and morphological peculiarities of montmorillonite treated with microwave radiation. Physics and Chemistry of Materials Treatment. 2019;(3): 5–12. (In Russ., abstract in Eng.). https://doi.org/10.30791/0015-3214-2019-3-5-12
Comodi P., Zanazzi P. F. Structural thermal behavior of paragonite and its dehydroxylate: a hightemperature single-crystal study. Physics and Chemistry of Minerals. 2000;27: 377–385. https://doi.org/10.1007/s002690000085
Kanygina O. N., Filiak M. M., Chetverikova A. G. Structural transformations in aluminum and silicon oxides in microwave fields. Materials Science. 2020;5: 37–42. https://doi.org/10.31044/1684-579x-2020-0-5-37-42
Hall P. L. The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties. Clay Minerals. 1980;15(4): 321–335. https://doi.org/10.1180/claymin.1980.015.4.01
Sorieul S., Allard T., Morin G., ... Calas G. Native and artificial radiation-induced defects in montmorillonite. An EPR study. Physics and Chemistry of Minerals. 2005;32: 1–7. https://doi.org/10.1007/s00269-004-0427-6
Gilinskaya L. G., Grigorieva T. N., Razvorotneva L. I. , Trofimova L. B. Composition and physicochemical properties of natural blue clays*. Chemistry for Sustainable Development. 2008;16(2): 147–157. (in Russ.). Available at: https://elibrary.ru/item.asp?id=11532517
Badmaeva S. V. Synthesis of Al-, Al/Fe intercalated montmorillonites and analysis of their physicochemical properties*. Cand. Сhem. Sci. diss.: 02.00.04. Irkutsk: 2005. (in Russ.). Available at: https://www.dissercat.com/content/sintez-al-feal-interkalirovannykhmontmorillonitov-i-issledovanie-ikh-izikokhimicheskikh-s
Worasith N., Goodman B. A., Neampan J., ... Ferrage E. Characterization of modified kaolin from the Ranong deposit Thailand by XRD, XRF, SEM, FTIR and EPR techniques. Clay Minerals. 2011;46(4): 539–559. https://doi.org/10.1180/claymin.2011.046.4.539
Kuzakov A. S. Electron paramagnetic resonance of degenerate orbitals in three-coordinate Ni(I) complexes*. Cand. Phys.-Math. Sci. diss. Irkutsk: 2012. (In Russ.). https://www.dissercat.com/content/elektronnyi-paramagnitnyi-rezonans-orbitalnovyrozhdennykh-sostoyanii-v-trikoordinatsionnykh
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.